All interested persons are provided 90 days from the above date to comment on this Scientific Literature Review and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. F. Alan Andersen.
TABLE OF CONTENTS

INTRODUCTION

1

CHEMISTRY

1

DEFINITION AND STRUCTURE

1

CHEMICAL AND PHYSICAL PROPERTIES

2

METHOD OF MANUFACTURE

2

ANALYTICAL METHODS

2

REACTIVITY

3

USE

5

COSMETIC

5

NON-COSMETIC USE

6

Food

6

BIOLOGICAL ACTIVITY

8

ABSORPTION, METABOLISM, AND EXCRETION

8

MISCELLANEOUS STUDIES

10

Antibacterial Activity

10

Antiviral Activity

11

Antifungal Activity

11

Effects on Enzymes

11

Endocrine Effects

14

Cellular/Tissue Effects

15

Hepatotoxicity/Hepatoprotection

15

Anti-Inflammatory Effects

17

Coagulant Effects

17

Neurological/Neuromuscular Effects

17

Anticariogenesis

18

PROTECTIVE EFFECTS

19

Ionizing/Ultraviolet Radiation Protection

19

Chemoprotection

20

ANIMAL TOXICOLOGY

21

ACUTE EFFECTS

21

Oral Toxicity

21

Intraperitoneal Toxicity

22

Dermal Toxicity

23

Acute Ocular Irritation

24

SUBCHRONIC EFFECTS

26

Oral Toxicity

26

Dermal Toxicity

27

CHRONIC ORAL TOXICITY

27

DERMAL SENSITIZATION

30

PHOTOTOXICITY

31

GENOTOXICITY

31

Mutagenesis Enhancement

34

Antimutagenesis

34

CARCINOGENICITY

35

Anticarcinogenesis/Antitumorigenesis

36

Radiation Co-effects

37

Inhibition of Nitrosamine Formation

38
The CIR Expert Panel issued a Safety Assessment of Propyl Gallate in November, 1981 with the conclusion that “Propyl Gallate is safe as a cosmetic ingredient at concentrations not exceeding 1 percent;” with the 1 % limit based on concerns of dermal sensitization observed in human and animal studies (Elder 1985). A search of the published literature identified new information regarding the safety of Propyl Gallate that had become available since that conclusion was reached, sufficient to reopen the safety assessment. As a first step, this Scientific Literature Review has been prepared which combines the information in the original safety assessment with newly available data.

Propyl Gallate (CAS No. 121-79-9; EINECS No. 204-498-2) is the aromatic ester of propyl alcohol and Gallic Acid (q.v.). As described in the *International Cosmetic Ingredient Dictionary and Handbook*, this compound functions as an antioxidant and a fragrance ingredient in cosmetic ingredients (Gottschalck and McEwen 2004). According to Lewis (1997), Propyl Gallate also functions as a food preservative and antioxidant for animal fats and oils, and is used in flavoring and transformer oils.

CHEMISTRY

DEFINITION AND STRUCTURE

Propyl Gallate (CAS No. 121-79-9; EINECS No. 204-498-2) is the n-propyl ester of gallic acid. It conforms to the following structure (Gottschalck and McEwen 2004):

![Propyl Gallate Structure](image)
Other names for this ingredient include:

- 3,4,5-Trihydroxybenzoic acid propyl ester (Gottschalck and McEwen 2004),
- Propyl gallate (RIFM) (Gottschalck and McEwen 2004),
- Gallic acid propyl ester (RTECS 2004),
- n-Propyl gallate (Windholz 1976),
- PG (Windholz 1976),
- Progallin P (Windholz 1976), and
- Tenox PG (Windholz 1976).

CHEMICAL AND PHYSICAL PROPERTIES

Propyl Gallate is a fine white to light brown crystalline powder with no odor and a slightly bitter taste. It is soluble in ethanol, ethyl ether, oil, and lard but is only slightly soluble in water (Windholz 1976, JCIA 1979, CTFA 1972). Propyl Gallate is also soluble in aqueous solutions of PEG ethers of cetyl alcohol; solubility increases as the concentration of the surfactant increases and the PEG chain length increases (Wan 1972). Table 1 summarizes other physical and chemical properties of Propyl Gallate.

METHOD OF MANUFACTURE

Propyl Gallate is the n-propylester of 3, 4, 5-trihydroxybenzoic acid. Natural occurrence of Propyl gallate has not been reported. It is commercially prepared by esterification of gallic acid with propyl alcohol followed by distillation to remove excess alcohol (21CFR184.1660; Food and Drug Research Labs, 1972).

ANALYTICAL METHODS

The literature contains many references pertaining to the determination of Propyl Gallate in foods, cosmetics, and biological systems. Chromatography is widely used for many determinations. Propyl Gallate may be analyzed directly, or it may be modified chemically and the derivative subsequently identified. Table 2 lists some of the reported analytical methods used for Propyl Gallate determination.
Table 1. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>212.20</td>
<td>Windholz (1976)</td>
</tr>
<tr>
<td>Melting range</td>
<td>146-150°C</td>
<td>Cosmetic, Toiletry, and Fragrance Association (1972), Windholz (1976)</td>
</tr>
<tr>
<td>Absorption wavelength (alcohol)</td>
<td>275 (^a)</td>
<td>Kahn, Curry, and Dustin (1973), Weast (1978)</td>
</tr>
<tr>
<td>pKa</td>
<td>8.11</td>
<td>Boyd and Beveridge (1979)</td>
</tr>
<tr>
<td>Partition coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oleyl alcohol:water</td>
<td>17</td>
<td>Boyd and Beveridge (1979)</td>
</tr>
<tr>
<td>octanol:water</td>
<td>32</td>
<td>Boyd and Beveridge (1979)</td>
</tr>
<tr>
<td>Rm</td>
<td>-0.52</td>
<td>Boyd and Beveridge (1979)</td>
</tr>
<tr>
<td>Ash</td>
<td>0.1 percent max</td>
<td>Cosmetic, Toiletry, and Fragrance Association (1972)</td>
</tr>
<tr>
<td>Loss on drying</td>
<td>0.5 percent max</td>
<td>Boyd and Beveridge (1979)</td>
</tr>
<tr>
<td>Inorganic Impurities (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>3 ppm max</td>
<td>Cosmetic, Toiletry, and Fragrance Association (1972)</td>
</tr>
<tr>
<td>Pb</td>
<td>20 ppm max</td>
<td>Cosmetic, Toiletry, and Fragrance Association (1972)</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 percent aqueous</td>
<td>6.3</td>
<td>Boehm and Williams (1943)</td>
</tr>
<tr>
<td>0.1 percent aqueous</td>
<td>5.9</td>
<td>Boehm and Williams (1943)</td>
</tr>
<tr>
<td>0.2 percent aqueous</td>
<td>5.7</td>
<td>Boehm and Williams (1943)</td>
</tr>
</tbody>
</table>

\(^a\) absorption shifts to higher wavelengths at higher concentrations; increasing Propyl Gallate concentration broadens curve to 290-320 nm. At 10 percent, the absorption peak is greater than 390 nm.

\(^b\) No information is available on organic impurities.

Reactivity

Propyl Gallate is an antioxidant. According to Boehm and Williams (1943), the antioxidant activity of Propyl Gallate resides its hydrogen-donating hydroxyl groups. Gutteridge and Fu (1981) suggested that Propyl Gallate is a free-radical scavenger which may be used to prevent the free-radical (R\(^*\)) peroxidation of lipids. Such free radicals can be generated by ionizing radiation, chemical reaction, oxidation, or enzymatic reactions. Lipid damage proceeds until all of the lipid is oxidized. This reaction occurs as follows:

\[
\text{LH (lipid)} + R^* \rightarrow \text{L}^* (\text{lipid free radical}) + \text{RH}
\]

\[
\text{L}^* + \text{O}_2 \rightarrow \text{LOO}^* (\text{lipid peroxy radical})
\]

\[
\text{LOO}^* + \text{LH} \rightarrow \text{LOOH} + \text{L}^*
\]
<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>chromatography</td>
<td></td>
</tr>
<tr>
<td>Thin-layer chromatography (TLC)</td>
<td>Matthew and Mitra 1965, Dessel</td>
<td>Infrared spectroscopy</td>
<td>CTFA 1972</td>
</tr>
<tr>
<td></td>
<td>and Clement 1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas chromatography (GC)</td>
<td>Wachs and Gassmann 1970</td>
<td>Fluorometric analysis</td>
<td>Latz and Hurtubise 1969</td>
</tr>
<tr>
<td>Vacuum sublimation/GC</td>
<td>McCaulley et al. 1967</td>
<td>Ultraviolet spectrophotometry</td>
<td>FAO/WHO Expert Committee on Food</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Additives 1965</td>
</tr>
<tr>
<td>Reversed phase partition</td>
<td>Berger et al. 1960</td>
<td>Colorimetric analysis with:</td>
<td></td>
</tr>
<tr>
<td>chromatography</td>
<td></td>
<td>Iron (II) ion</td>
<td>Chatt, 1962;</td>
</tr>
<tr>
<td>Centrifugal paper</td>
<td>Davidek 1963</td>
<td>Phosphomolybdic acid</td>
<td>Chatt 1962</td>
</tr>
<tr>
<td>chromatography</td>
<td></td>
<td>2,2'-Bipyridyl reagent</td>
<td>Association of Public Analysts</td>
</tr>
<tr>
<td>Polyamide TLC</td>
<td>Davidek and Pokorny 1961, Chiang</td>
<td></td>
<td>1963</td>
</tr>
<tr>
<td></td>
<td>and Tseng 1969</td>
<td></td>
<td>Elder 1985</td>
</tr>
<tr>
<td>Liquid chromatography</td>
<td>King et al. 1980</td>
<td>2,2'-Diphenyl-1-picryl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hydrazyl</td>
<td></td>
</tr>
<tr>
<td>chromatography</td>
<td>al. 1978</td>
<td>solid phase UV spectroscopic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>detection</td>
<td></td>
</tr>
<tr>
<td>Column chromatography</td>
<td>Berger et al. 1960</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propyl Gallate interferes with this reaction at the stage of lipid peroxo radical formation (Gutteridge and Fu 1981):

\[
\text{PGH (Propyl Gallate)} + \text{LOO}^* \rightarrow \text{LOOH} + \text{PG}^*
\]

\[
\text{PG}^* + \text{PGH} \rightarrow \text{PG-PG}
\]

The oxidation of Propyl Gallate during free-radical scavenging shown in Figure 1 was suggested by Forgo and Buchi (1970).

Another example in which this reaction occurs is the inhibition by Propyl Gallate of nitrosopyrroli dine formation in cooked, nitrite-cured bacon (Sen et al, 1976).

Propyl Gallate is stable in neutral or slightly acidic chemical environments but is unstable when heated or in mild alkaline environments (Bentz et al. 1952). It discolors in the presence of iron or when it is exposed to air or light for long periods of time (Elder 1985).
Propyl Gallate is an antioxidant used in cosmetic to stabilize vitamins, essential oils, perfume, as well as fats and oils, all of which readily undergo oxidation (Basalm and Sagarin, 1974; Marks, Elsner, and DeLeo, 2002). Oxidation of these products results in rancidity, color changes, viscosity changes, and active ingredient deterioration. Oxidation can occur due to the presence of heat, light, moisture, oxygen, chemical pro-oxidants, or microorganisms. Propyl Gallate acts by inhibiting the accumulation of damaging free radicals. Propyl Gallate may be used alone but is often used in a mixture of phenolic antioxidants. BHA and Propyl Gallate are synergistic antioxidants (Basalm and Sagarin, 1974).

According to the *International Cosmetic Ingredient Dictionary and Handbook*, Propyl Gallate is used in lipsticks, bath preparations, misc.; body and hand preparations (excluding shaving preparations); bath capsules; moisturizing preparations; skin care preparations, misc.; makeup preparations (not eye); eye makeup preparations, misc.; face and neck preparations (excluding shaving preparations); bath oils,
tablets, and salts; cleansing products (cold creams, cleansing lotions, liquids and pads); eyeliners; night skin shadows; eyebrow pencils; face powders; foundations; indoor tanning preparations; mascara; suntan gels, creams, and liquids (Gottschalck and McEwen, 2004).

In 1981, the cosmetic industry voluntarily reported to FDA that 118 cosmetic products contained Propyl Gallate (Elder, 1985). Most of these products contained ≤0.1 % Propyl Gallate, but the maximum concentration of use was up to 5 % in fragrance powders. In 2002, industry reported 167 uses of Propyl Gallate in cosmetic products (FDA, 2002). The maximum concentration was 0.1 percent, in the "other personal hygiene" category (CTFA, 2003). Table 3 summarizes the current and historical use and concentration data of Propyl Gallate in cosmetics.

NON-COSMETIC USE

Food

Propyl Gallate has been employed as an antioxidant in foods since 1948 to protect fats, oils, and fat-containing food from rancidity, which results from the formation of peroxides. To some extent, it is used in essential oils to retard the oxidation of monoterpenes and oxidation-sensitive aldehydes and ketones. The solubility of Propyl Gallate in fats and oils is limited to less than 2 percent. Propyl Gallate is often difficult to dissolve in these substances without the aid of a carrier solvent (Bentz et al. 1952, Life Sciences Research Office 1973).

Propyl Gallate is used at concentrations of 0.01484 to 0.00001 percent in fats and oils, meat products, snack foods, baked goods, nut products, grain products, frostings, chewing gum, soft candy, frozen dairy products, gelatin products, and alcoholic and nonalcoholic beverages. The FDA has placed the limit on the total antioxidant content of food at 0.02 percent of the fat or oil content of the food (Life Sciences Research Office 1973).

The average daily intake of Propyl Gallate from foods is estimated to be 0.014 mg/kg for ages 0 to 5 months, 0.114 mg/kg for ages 6 to 11 months, 0.135 mg/kg for ages 12 to 23 months, and 0.065 mg/kg for ages 2 to 65+ years. The Select Committee of the LSRO(1973) concluded that these figures accurately reflect the actual amounts of Propyl Gallate consumed by these various groups.
Table 3. Current and historical uses and concentrations of Propyl Gallate in cosmetics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils, tablets and salts (143)</td>
<td>4</td>
<td>3</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Soaps and detergents (421)</td>
<td>2</td>
<td>2</td>
<td>≤0.1%</td>
<td>0.000005-0.002%</td>
</tr>
<tr>
<td>Eye Makeup Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyebrow pencils (102)</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eyeliners (548)</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>0.01%</td>
</tr>
<tr>
<td>Eye lotions (25)</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mascara (195)</td>
<td>2</td>
<td>2</td>
<td>≤0.1%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Other eye makeup preparations</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>0.03%</td>
</tr>
<tr>
<td>Fragrance Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colognes and toilet waters (684)</td>
<td>5</td>
<td>-</td>
<td>≤0.1%</td>
<td>0.003-0.01%</td>
</tr>
<tr>
<td>Perfumes (235)</td>
<td>3</td>
<td>-</td>
<td>≤0.1%</td>
<td>0.002%</td>
</tr>
<tr>
<td>Powders (273)</td>
<td>2</td>
<td>1</td>
<td>≤5%</td>
<td>-</td>
</tr>
<tr>
<td>Other fragrance preparations (173)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Non-coloring Hair Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair conditioners (651)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shampoos</td>
<td>2</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Hair tonics, dressings, etc.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Makeup Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blushers (245)</td>
<td>7</td>
<td>3</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Face powders (305)</td>
<td>21</td>
<td>1</td>
<td>≤0.1%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Foundations (324)</td>
<td>2</td>
<td>2</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Lipsticks (962)</td>
<td>21</td>
<td>75</td>
<td>≤0.1%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Makeup bases (141)</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Rouges (28)</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Makeup fixatives</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Other makeup preparations (201)</td>
<td>7</td>
<td>6</td>
<td>≤0.1%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Nail Care Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuticle softeners</td>
<td>1</td>
<td>1</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Personal Hygiene Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other personal hygiene products</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>0.1%</td>
</tr>
<tr>
<td>Shaving Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftershave lotions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0004%</td>
</tr>
<tr>
<td>Skin Care Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin cleansing creams, lotions, liquids, and pads</td>
<td>9</td>
<td>4</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Face and neck skin care preparations</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body and hand skin care preparations</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>0.0002%</td>
</tr>
<tr>
<td>Foot powders and sprays</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000005%</td>
</tr>
<tr>
<td>Moisturizers</td>
<td>9</td>
<td>7</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Night skin care preparations</td>
<td>4</td>
<td>4</td>
<td>≤1%</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3 (continued). Current and historical uses and concentrations of Propyl Gallate in cosmetics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Paste masks (mud packs)</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Skin Lighteners*</td>
<td>3</td>
<td>-</td>
<td>≤1%</td>
<td>-</td>
</tr>
<tr>
<td>Skin fresheners</td>
<td>1</td>
<td>2</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Wrinkle Smoothers*</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Other skin care preparations (38)</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suntan Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suntan gels, creams and liquids (131)</td>
<td>2</td>
<td>3</td>
<td>≤1%</td>
<td>-</td>
</tr>
<tr>
<td>Indoor tanning preparations (71)</td>
<td>1</td>
<td>4</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Other suntan preparations (38)</td>
<td>1</td>
<td>-</td>
<td>≤0.1%</td>
<td>-</td>
</tr>
<tr>
<td>Total uses/ranges for Propyl Gallate</td>
<td>118</td>
<td>167</td>
<td>≤1% - 5%</td>
<td>0.000005 - 0.1%</td>
</tr>
</tbody>
</table>

BIOLOGICAL ACTIVITY

ABSORPTION, METABOLISM, AND EXCRETION

Orten et al. (1948) analyzed the urine from dogs fed diets containing 0.0117 percent Propyl Gallate for 14 months. During this time, no detectable quantities of Propyl Gallate were found in the urine. Van Esch (1955) studied the in vivo and in vitro metabolism of Propyl Gallate. He determined that pancreatic extracts containing lipases and esterases did not hydrolyze Propyl Gallate, indicating that it was not hydrolyzed in the gut. Blood esterases also did not hydrolyze Propyl Gallate. When fed to rats, most of the Propyl Gallate was passed in the feces as the original ester. The urinary components detected were the original ester and gallic acid, and these were excreted completely within 24 hours.

Booth et al. (1959) and Dacre (1960) studied the metabolism and excretion of Propyl Gallate in rats and rabbits. When Propyl Gallate was administered orally to rats, the major urinary metabolite was 4-methoxygallic acid, whereas 2-methoxypyrogallol, gallic acid, and glucuronides of the methoxylated products were the minor metabolites. When Propyl Gallate was given orally to rabbits, 79 percent of the administered dose was excreted in the urine, 72 percent as 4-methoxygallic acid glucuronide (4-methoxygalloyl-β-D-glucosiduronic acid) and 6.7 percent as unconjugated phenolic compounds. Minor metabolites included pyrogallol (free and conjugated) and free 4-methoxy gallic acid. Figure 2 presents the metabolic pathway of Propyl Gallate in rats and rabbits.
Figure 2. Metabolism of Propyl Gallate in rats and rabbits (after Dacre 1960).
Antibacterial Activity

Jordan et al. (1961) studied the antibacterial effects of Propyl Gallate on bacteria of the human oral cavity. At concentrations of 0.0032 to 0.266 percent, Propyl Gallate inhibited the growth of 27 strains of bacteria. The authors considered this effect significant in regard to the ability of Propyl Gallate to inhibit cariogenesis. Against Salmonella narasino and Saccharomyces cerevisiae, Gallate esters were bactericidal; the effect increased as the alkyl chain length increased (Bajaj et al. 1970).

The effect of Propyl Gallate on *Escherichia coli* was further studied in 1979 by Boyd and Beveridge. The antibacterial activity of this ingredient was positively correlated with its solubility, partition coefficient, pKa, and reduction of water surface tension. The authors suggested that Propyl Gallate exerts antibacterial activity by interfering with some biochemical free radical intermediate within the organism. The action was not due to uncoupling of the bacteria's oxidative phosphorylation system or damage to the cytoplasmic membrane. Propyl Gallate did inhibit respiration and malate dehydrogenase activity and altered the cytochrome spectra of treated cells, suggesting interference with the terminal cytochrome system. Propyl Gallate also inhibited synthesis of the general cell polymers, RNA, DNA, and protein.

Shih and Harris (1977) observed Propyl Gallate, at 400 ppm, to be lethal to *E. coli*, but it had little effect at this concentration on *Staphylococcus aureus*. They also observed that combinations of butylated hydroxyanisole (BHA) and Propyl Gallate were more effective than either ingredient alone, indicating a synergistic effect. They concluded, however, that at the concentrations used in foods, Propyl Gallate probably has low antimicrobial activity.

Retico et al. (1981) found that Propyl Gallate, dissolved in propylene glycol at initial concentrations of 300 mg/ml, shows little antibacterial activity when added to the test medium. However, it potentiates the activity of meclocycline against *Pseudomonas*, *Proteus*, *E. coli*, and *Klebsiella* strains. Meclocycline was tested with Propyl Gallate in ratios of 1:8 and 1:5.33 at pH values of 5.8 and 7.2. The potentiating effect of Propyl Gallate is seen especially with resistant strains.

Chung et al. (1998) reported that Propyl Gallate at 100-1000 µg/ml inhibited the growth of intestinal bacteria strains *Bacteroides fragilis* ATCC 25285, *Clostridium clostridiiforme* ATCC 25537, *C. Perfringens*

Antiviral Activity

Propyl Gallate inhibited the multiplication of the virus of nuclear polyhedral disease in silkworms by inducing a decreased oxygen requirement, inhibiting penetration of the virus into cells, inhibiting viral DNA synthesis, and by reducing the DNA and RNA content of the silkworm cells (Kok, 1960).

Antifungal Activity

Propyl Gallate stabilizes oxidation-sensitive amphotericin-B and prolongs its antifungal activity. An antifungal synergism between these two compounds has been suggested (Andrews et al. 1977; Beggs et al. 1978).

Propyl Gallate increases antifungal activity of imidazole, fluconazole, and itraconazole in *Candida albicans* by lowering the risk of resistance to these antifungal drugs (D'Auria et al. 2001; Strippoli et al. 2000). Propyl Gallate potentiated the activity of the fungicide azoxystrobin in vitro so that resistance was no longer observed (Miguez et al. 2003).

Effects on Enzymes

Propyl Gallate inhibited eosin-sensitized photodynamic oxidation of trypsin by competing efficiently with oxygen and trypsin for reaction with the eosin triplet (excited) state. Propyl Gallate reduced the excited eosin to form a semireduced eosin radical and an oxidized Propyl Gallate form. Then, by reverse electron transfer, ground state eosin and Propyl Gallate were regenerated. Photodynamic activation occurred with the formation of a free radical, and Propyl Gallate acted by inhibiting free-radical formation (Rizzuto and Spikes, 1975).

Propyl Gallate also inhibited mild oxidation of serum low-density lipoprotein. Upon oxidation, the apoprotein was converted from a homogeneous, high-weight substance to a mixture of low-weight polypeptides. This resulted from a reaction between the protein moiety and the autooxidizing lipid moiety of the lipoprotein. Addition of Propyl Gallate to the serum inhibited this reaction (Schuh et al. 1978).

Gonikberg et al. (1967) reported that Propyl Gallate forms a biochemical complex with flavinmononucleotide (FMN).
Free radicals are generated at almost all stages of glycolysis, respiration, oxidation, and certain enzyme systems, among other biochemical processes. Since Propyl Gallate is a free-radical inhibitor, it would be expected to affect all of these systems. Propyl Gallate decreased the activity of certain redox enzymes, such as D-glyceraldehyde-3-phosphate dehydrogenase, lactic dehydrogenase, and alcohol dehydrogenase, all of which produce free-radical intermediates; it did not inhibit aldolase and enolase, which produce no free radicals (Neifakh, 1962). Vartanyan et al. (1964) observed the inactivation of lactic dehydrogenase by Propyl Gallate was due to the oxidation of sulfhydryl (SH) groups of the enzyme by Propyl Gallate radicals (7.1 x 10^{-4} M). Brzhevskaia et al. (1966) reported that Propyl Gallate, at concentrations of 1 x 10^{-3} M to 6.7 x 10^{-3} M, inhibited the enzymatic hydrolysis of adenosine triphosphate (ATP) 40 to 85 percent by blocking the formation of free radicals. Agatova and Emanuel (1966) stated that radicals of Propyl Gallate (at concentration of 1 x 10^{-3} M) accelerated the conversion of SH groups of enzymes to S-S bonds under oxidation. Both the formation of S-S bonds and the destruction of SH bonds deactivate enzymes. They observed that D-glyceraldehyde-3-phosphate dehydrogenase, which contains SH groups, was affected, whereas RNA-ase and trypsin, with S-S bonds but no SH bonds, were not affected.

Propyl Gallate significantly inhibited tyrosine hydroxylase activity in vitro at concentrations of 10^{-4} to 10^{-6} M but was noninhibiting to tyrosine hydroxylase in vivo when administered intraperitoneally at 200 or 400 mg/kg in guinea pigs (Levitt et al. 1967).

Propyl Gallate inhibited microsomal aminopyrine demethylase (part of the microsomal mixed-function oxidase system) and NADPH-cytochrome c reductase activities. Propyl Gallate readily reacted with radical species of these systems and strongly inhibited NADPH-dependent lipid peroxidation in microsomes (Torrielli and Slater, 1971). Yang and Strickhart (1974) observed that Propyl Gallate inhibited microsomal benzo[a]pyrene hydroxylase and demethylase activities in vivo, with 50 percent inhibition occurring at 50 and 140 to 500 μM Propyl Gallate, respectively. Propyl Gallate did not, however, inhibit NADPH-dependent reduction of cytochrome P-450, indicating that the site of inhibition was not on NADPH-cytochrome c reductase, as Torrielli and Slater (1971) had suggested. The authors believed the site of inhibition was cytochrome P-450 itself. In 1977, Rahimtula et al. (1977) confirmed that Propyl Gallate (25 to 125μM) did not inhibit NADPH-cytochrome P-450 reductase but did inhibit benzo[a]pyrene hydroxylase.
The conflicting in vitro results reported by Torrielli and Slater (1971) and Yang and Strickhart (1974) may mean that the concentrations of Propyl Gallate attained in vivo were much lower than those used in vitro (King and McCay, 1981).

Further studies revealed that Propyl Gallate inhibited three azoreductases of the hepatic microsomal mixed function oxidase system, (Autrup and Warwick, 1975) epoxidation of all trans-retinoic acid by rat tissue homogenate, (Sietsem and DeLuca, 1979) particulate guanylate cyclase activity from fibroblast and liver homogenates by preventing arachidonate oxidation and malonyldialdehyde formation, (Ichihara et al. 1979) and glucose-6-phosphatase activity in rat microsomes both in vivo and in vitro (Paradisi et al. 1979).

Propyl Gallate, which is metabolized to a substrate for Phase II xenobiotic metabolizing enzymes (glucuronide formation) in the liver, was injected intraperitoneally into rats daily for 7 days at a dose of 150 mg/kg per day. Animals were then killed, and homogenates obtained from the liver were analyzed for enzymic activity. Urine was analyzed daily during treatment for the presence of metabolites of D-glucuronic acid. Propyl Gallate had no effect on hepatic Phase I xenobiotic metabolism (mixed-function oxidase system), cytochrome P-450, or microsomal protein content. Propyl Gallate did stimulate hepatic microsomal UDP-glucuronyltransferase activity and increased excretion of free and conjugated D-glucuronic acid (Lake et al. 1980).

The effect of Propyl Gallate on the hepatic mixed-function oxidase system was studied in weanling rats. Animals were placed on diets containing various amounts and types of fat plus 0 or 0.3 percent Propyl Gallate for 50 days. Rats were then killed, the livers were removed, and homogenates were prepared and assayed. Rats on diets containing Propyl Gallate had no significant differences in average body weights, liver weights, liver:body weight ratios, or in microsomal protein content in comparison to controls. Two hepatic microsomal mixed-function oxidases, aniline hydroxylase and amino pyrine N-demethylase, were unaffected by Propyl Gallate. Propyl Gallate also had no effect on cytochrome P-450 content or NADPH-cytochrome c reductase activity. Propyl Gallate appeared to have no in vivo influence on the rat hepatic microsomal metabolizing system.
Endocrine Effects

Propyl Gallate was reported to inhibit the biosynthesis of prostaglandin (PGE) from seminal vesicles and mammary glands. Nugterin et al. (1966) were first to demonstrate that high concentrations of Propyl Gallate inhibited prostaglandin synthesis in sheep seminal vesicles. McDonald-Gibson et al. (1976) confirmed these findings (50 percent inhibitory concentration of 103 μM) using bull seminal vesicles in vitro. Panganamala et al. (1977) reported that Propyl Gallate, at concentrations of 4×10^{-4} M, inhibited the formation of prostaglandin from eicosa-8,11,14-trienoic acid by bovine seminal vesicle microsomes.

Beetens and Herman (1980) observed that Propyl Gallate enhanced the formation of 6-oxo-PGF1α by incubation with ram seminal vesicle microsomes. This resulted either from stimulation of prostacyclin synthetase or from inhibition of a prostacyclin synthetase inhibitor.

The effect of Propyl Gallate on prostaglandin synthetase activity of mammary gland tissue was studied in vivo. Female Sprague-Dawley rats were fed diets containing various lipid content, with or without Propyl Gallate (0.3 percent). Rats were killed 24 hours later, and homogenates of mammary gland tissues were prepared for prostaglandin synthetase determination. Dietary Propyl Gallate produced an elevation of PGF2α but had no effect on PGE2. It was suggested that Propyl Gallate scavenged the oxygen radical formed during the conversion of PGG2 to PGH2 and, consequently, altered the amount and types of prostaglandins produced by the mammary gland (1980).

Propyl Gallate altered prostaglandin endoperoxide synthetase and peroxidase activities of seminal vesicle microsomes. At 0.1 mM Propyl Gallate, production of PGF2α and PGE2 by mammary gland tissue microsomes was stimulated, but at higher concentrations (0.50 to 2.50 mM) inhibition occurred. Mammary gland tissue microsomes of rats fed diets containing 0.3 percent Propyl Gallate synthesized more PGF2α and PGI2 than did controls. Exogenous Propyl Gallate stimulated production of PGF2α and PGE2 in rats fed control diets and rats fed vitamin E-deficient diets. The author concluded that Propyl Gallate had a concentration-dependent effect on the biosynthesis of prostaglandins by regulating the availability of lipid.
peroxide intermediate (Carpenter, 1981).

Cellular/Tissue Effects

Propyl Gallate stimulated the growth of human diploid fibroblasts at a concentration of 10^{-6} M; however, it was a potent inhibitor of the same at concentrations of 10^{-6} M or greater (Bettger and Ham, 1981). Propyl Gallate also inhibited in vitro antibody production by mouse splenic cells at 5 μg/ml and suppressed multiplication of human and mouse cells at 20 μg/ml (Blalock et al. 1981).

The effect of Propyl Gallate on mouse lung metabolism was studied by Omaye et al. (1977) Groups of 16 to 24 adult mice were given single intraperitoneal injections of 0, 50, 100, or 200 mg/kg Propyl Gallate. Three days later, mice were killed, and the lungs were examined for lesions, weighed, and assayed for enzyme activity as well as DNA content. No significant pulmonary abnormalities or biochemical changes were observed in mice injected with up to 200 mg/kg Propyl Gallate.

Hepatotoxicity/Hepatoprotection

Ugazio and Torrielli (1968) studied the effect Propyl Gallate had on hepatic steatosis induced by carbon tetrachloride. In male Wistar rats, CCl$_4$ treatment caused a noticeable increase in hepatic triglyceride content within 4 hours of poisoning with 250 μl of CCl$_4$. However, when Propyl Gallate (200 mg/kg) was administered prior to poisoning, complete protection against steatosis was observed under the experimental conditions.

Paradisi et al. (1979) experimented with groups of male Wistar rats by treating suspensions of rat liver with carbon tetrachloride (CCl$_4$) (dose unstated), Propyl Gallate (50 μM), Propyl Gallate (50 μM) and CCl$_4$ (dose unstated), Propyl Gallate (12 μM), and Propyl Gallate (12 μM) and CCl$_4$ (dose unstated). The control groups received microsomal proteins. The activity of hepatic glucose-6-phosphatase was measured *in vitro*. The activity of this enzyme is prematurely inhibited after the administration of CCl$_4$. In all cases, except for the control, the results were significant (p<0.01).

Wu et al. (1994) examined whether Propyl Gallate was a hepatoprotective antioxidant, and compared it to Trolox, a vitamin E analogue. In isolated Sprague-Dawley rat hepatocytes, Propyl Gallate prolonged substantially cell survival against oxyradicals generated with xanthine oxidase-hypoxanthine. The protection was dose dependent and excelled that of Trolox, mannitol, or ascorbate, each at or near its
optimum level in the same system. Mechanistically, the authors found that Propyl Gallate (a) protected hepatocytes against the cascade of oxyradicals produced by xanthine oxidase-hypoxanthine; (b) protected hepatocytes against superoxide radicals generated specifically by menadione; (c) protected the functionally important hepatic vascular endothelial cells more effectively than Trolox against xanthine oxidase-hypoxanthine, and (d) approximately halved the amount of lipid conjugated dienes (a more specific marker of oxyradical damage than malondialdehyde) formed in tissues after oxidant damage.

The addition of Propyl Gallate (0.5-2.0 mM) to isolated rat hepatocyte suspension elicited concentration-dependent cell death accompanied by losses of intracellular ATP, adenine nucleotide pools, glutathione (GSH) and protein thiols. The rapid loss of intracellular ATP preceded the onset of cell death caused by Propyl Gallate (Nakagawa and Tayama 1995).

Nakagawa et al. (1996) isolated hepatocytes from fasted (18 h) rats. The addition of fructose (15 mM), to hepatocyte suspensions resulted in the prevention of Propyl Gallate (1 mM)-induced cell killing accompanied by decrease in intracellular ATP loss during a 3h-incubation period. Despite this, fructose did not completely prevent an abrupt loss of intracellular glutathione caused by Propyl Gallate, but effectively inhibited the loss of protein thiol levels.

Nakagawa et al. (1997) treated isolated rat hepatocytes with 0, 0.25, 0.50, 1.0, or 2.0 mM Propyl Gallate for 3 hours. Propyl Gallate at 1 or 2 mM induced acute cell killing. At 0.5 mM, Propyl Gallate induced signs of apoptosis. The onset of DNA fragmentation was associated with glutathione depletion.

Li et al. (1998) studied the effects of liver tissue of mice exposed to trinitrotoluene (TNT). Some of the symptoms were hepatocellular edema, cytoplasmic eosinophilia, and sludging of the blood with some cells undergoing particle necrosis. Oral administration of Propyl Gallate concurrent with TNT exposure leads to a marred reduction in pathological change in liver tissue and clear regeneration of liver cells, demonstrating that Propyl Gallate has a certain protective effect against liver damage caused by exposure to TNT.

Propyl Gallate (50 mg/kg, i.p.) alone protected rat lung and kidney tissue from aryl hydrocarbonhydroxylase (AHH) activity induced by methylcholanthrene (20 mg/kg, i.p.). Propyl Gallate with octyl gallate (50 mg/kg, i.p.) showed this protective effect in rat liver tissue (Gnojkowski et al. 2001).
Anti-Inflammatory Effects

Franzone et al. (1980) studied the effect of Propyl Gallate and 2-mercaptopropionyl glycine (2-MPG) on acute inflammatory reactions and PGE$_2$ biosynthesis. In male Wistar rats, Propyl Gallate (150 mg/kg) and 2-MPG (200 mg/kg) were administered endoperitoneally 30 minutes before induction of phlogosis. The acute inflammatory reaction was triggered by injecting a mixture of carragenine, 5-hydroxytryptamine, bradykinin, and Dextran. Controls were treated with NaCl 0.9%. The animals were killed and their spleens collected. Propyl Gallate and 2-mercaptopropionyl glycine turned out to be active in significantly inhibiting the acute inflammatory reaction in spleen samples caused by carragenine, a phrogen. In addition, the two chemicals are able to limit the biosynthesis of PGE$_2$. According to the authors, the anti-inflammatory effects of Propyl Gallate and 2-MPG may depend on both the scavenger properties of the two compounds against some final products of lipid peroxides (aldehydes) originated at the inflammation site and the partial inhibition of the formation of PGE$_2$ by acting on the cyclo-oxigenase system.

Coagulant Effects

Rothwell et al. (2003) compared bandages modified by the addition of Hemostyptin, a proprietary platelet activating reagent containing Propyl Gallate with TC-S fibrin bandages. Hemostyptin was added as an additional layer to the TC-S bandages and the bandages were tested for hemostatic efficacy in a swine femoral artery bleeding model. The TC-S + Hemostyptin preparations qualitatively and quantitatively exhibited more robust blood clotting at the surgical site than the control bandages (p=0.05). Bleeding times were shortened for animals treated with the Hemostyptin bandages and residual platelet counts in these animals were higher.

Neurological/Neuromuscular Effects

The effect of gallates on bradykinin-induced smooth muscle contraction was studied in the isolated guinea pig ileum. When Propyl Gallate was mixed with bradykinin (a vasoactive peptide), the contractile response was suppressed. Length of the gallate alkyl side-chain influenced the degree of inhibition. The results indicated that Propyl Gallate (10^{-4} M) was a strong, partially competitive inhibitor of bradykinin; the inhibition was moderately reversible (Posati et al. 1970).

Modak and Rao (1971) studied the anesthetic activity of Propyl Gallate. Propyl Gallate was an
effective anesthetic on the lumbar plexus of frogs. Infiltration anesthesia was studied in groups of 8 rabbits and guinea pigs. Propyl Gallate (1 percent in saline) was injected intradermally into the epilated skin of each animal. Procaine HCl was injected in other sites of the same animal to compare the response to Propyl Gallate. Pinprick reaction in these injection sites was recorded along with adverse reactions to drug injection. Onset and duration of anesthesia were also recorded. Potentiation of Propyl Gallate's anesthetic activity by epinephrine was studied as above in each of 4 rabbits. Results of these tests indicated that Propyl Gallate possessed good local anesthetic activity when compared to a known anesthetic (Procaine). The activity of Propyl Gallate in infiltration anesthesia was potentiated by epinephrine.

The effect of Propyl Gallate on arachidonic acid (AA)-induced abdominal contractions was studied in mice. Treatment consisted of intraperitoneal injection, subcutaneous injection, or oral ingestion of an AA-Propyl Gallate mixture, Propyl Gallate then AA, AA then Propyl Gallate, or AA and Propyl Gallate simultaneously. Positive and negative controls were included in this study. Propyl Gallate inhibited AA-induced contractions when administered intraperitoneally as a mixture with AA (2 mg/ml incubate), as a pretreatment (4 mg/kg), or simultaneously with AA (100 μg/ml incubate). Oral and subcutaneous administration of 10 or 40 mg/kg Propyl Gallate had no effect on AA-induced contractions. The antinociceptive effect of Propyl Gallate may be due in part to its anesthetic effect and in part to deactivation of arachidonic acid (McDonald-Gibson et al. 1976).

Anticariogenesis

In the 1960s, the effect of Propyl Gallate on caries was studied extensively. Jordan et al. (1961) placed rats on cariogenic diets with and without 0.5 percent Propyl Gallate for 90 days. Animals were then killed, and molar teeth were scored for number of caries. Positive and negative controls were included in the study. Propyl Gallate significantly reduced the number of caries per rat. At this concentration, Propyl Gallate resulted in reduced weight gains but no excessive mortality. Characteristic brown stains were observed on the surface layers of the dentin of rats on the Propyl Gallate diet; this effect was supposedly due to the formation of metal-gallate precipitates from the diet. Thus, Propyl Gallate acts as an antibacterial agent in reducing caries.

Lisanti and Eichel (1963) studied the cariogenic effect in hamsters. Groups of 40 animals were fed
control or cariogenic diets, which included 0 or 0.03 percent Propyl Gallate in the drinking water for 50 days. Animals were then killed, and teeth were scored for caries. Animals on the Propyl Gallate diet had significant weight reductions. Propyl Gallate reduced the number of caries when compared to positive and negative controls. Total number of caries was reduced by 60 percent in male rats and by 36 percent in female rats. Therefore, a metabolic tooth defect in this strain of animals, induced by a cariogenic diet, was partially corrected by ingestion of Propyl Gallate.

Thompson et al. (1965) reported the results of a 30-day study of Propyl Gallate in cotton rats. Groups of 16 animals were fed a cariogenic diet containing 0.5 percent Propyl Gallate for 30 days. Rats were then killed, and teeth were scored for caries. Propyl Gallate did not induce significant weight reduction in animals; it also did not reduce the incidence of caries. Propyl Gallate-fed rats had a significantly higher incidence of caries when compared to controls.

PROTECTIVE EFFECTS

Ionizing/Ultraviolet Radiation Protection

Ionizing radiation results in excessive peroxide formation in animal tissue; these peroxides are, in turn, tissue damaging. Propyl Gallate demonstrated a protective effect against radiation in mice administered Propyl Gallate orally (0.25 to 0.5 percent in the diet) or intraperitoneally (30 to 150 mg/kg) and in rats administered intraperitoneally (50 mg/kg) prior to exposure to sublethal doses of radiation (Ershoff and Steers, 1960; Gorodetskii et al. 1962; Lipkan et al. 1962; Isupova and Balabukha, 1963).

It was determined that Propyl Gallate inhibited DNA depolymerization induced by ionizing radiation in vitro (Gorodetskii et al. 1961; Lipkan et al. 1962; Isupova and Balabukha, 1963; Emanuel et al. 1960). Pre- or posttreatment with Propyl Gallate increased the survival rate of monkey heart cells in vitro following gamma-radiation (Parkkomenko, 1963). Sheng et al. (1982) found radiation-induced spins could be transferred from DNA to Propyl Gallate and believed it was exclusively due to a hydrogen transfer mechanism.

Propyl Gallate inhibited lipid peroxidation in lysosomal membranes treated with high-energy radiation in vitro (Williams and Slater, 1973). This result prompted Kahn et al. (1973) to study the photoprotective effect of Propyl Gallate in two in vitro systems, photohemolysis of red blood cells (RBCs) and growth
inhibition of Candida albicans by light. Propyl Gallate protected RBCs from ultraviolet light (280 to 370 nm) via energy absorption and significantly reduced the oxygen tension of the system (photohemolysis is inhibited by decreased oxygen tension). Propyl Gallate did not protect C. albicans from the deleterious effects of radiation. As a photoprotector, Propyl Gallate may act by reducing the formation of free radicals during radiolysis of tissue water, which react with membrane lipids to produce damaging lipoperoxides, or it may act as a free-radical scavenger to neutralize free radicals formed by hydrogen donation.

Propyl Gallate (0.3 to 1 mg/ml) protected Salmonella typhimurium against the lethal and mutagenic effects of gamma-radiation in the presence of oxygen. The magnitude of protection in each case was similar. No protection occurred when Propyl Gallate was added immediately after radiation (Ben-Hur et al. 1981).

The effect of Propyl Gallate as an ultraviolet light protector was studied in vivo by McDonald-Gibson and Schneider (1974). The test material (up to 10 percent w/w) was applied to the epilated ear of guinea pigs either before or after UV radiation. In unprotected sites, radiation resulted in erythema, edema and blister formation. Pretreatment with Propyl Gallate inhibited induction of erythema, edema, and pyresis. Posttreatment inhibited blister formation. In a similar study, Propyl Gallate (3 to 15 mg/animal) was applied under occlusion to male rat epilated dorsal skin immediately after radiation with a Hanovia Model 10 quartz lamp (with filter) emitting UV light greater than 295 nm. Erythema was assessed 4 hours later. When compared to control sites, Propyl Gallate reduced UV light-induced erythema. This effect may be linked to its inhibition of prostaglandin synthesis (Law and Lewis, 1977).

Chemoprotection

Propyl Gallate, in doses ranging from 30 to 300 mg/kg body weight, inhibited the toxic effects of certain chemicals in rats. These chemicals, through the formation of free-radicals, can result in lipoperoxidation (CCl₄), hepatotoxicity (acetaminophen), fatty liver (white phosphorus, CCl₄), hepatic polysomal disaggregation (white phosphorus), hemolysis of RBCs (vitamin D2), and decreased hepatic microsome amino acid incorporation (CCl₄). Propyl Gallate acted as a free-radical scavenger and inhibited lipoperoxidation. It also inhibited cytochrome P-450 of the microsomal mixed function oxidase drug-metabolizing system; this resulted in decreased formation of potentially toxic metabolites (Dianzani and
Pretreatment with 0.75% Propyl Gallate in feed for 23 days increased the survival rate of mice exposed to 8 ppm phosgene, an industrial chemical intermediate for the production of isocyanates, pesticides, plastics, and polyurethanes, for 20 minutes in a whole body exposure chamber. This protective effect was not seen with pretreatment of 1.5% Propyl Gallate (Sciuto and Moran 2001).

ANIMAL TOXICOLOGY

ACUTE EFFECTS

Oral Toxicity

The acute oral LD50 of Propyl Gallate has been determined in mice (1.70 to 3.50 g/kg), rats (2.1 to 7 g/kg), hamsters (2.48 g/kg), and rabbits (2.75 g/kg). Groups of animals received the test material at one or more doses, orally or by gastric intubation. Animals were observed for up to 10 days. In a number of studies, the tissues from animals that died were examined microscopically. Results of these tests are summarized in Table 4.

Table 4. Acute Oral Toxicity of Propyl Gallate

<table>
<thead>
<tr>
<th>Animal</th>
<th>Number/group</th>
<th>Dose</th>
<th>LD50</th>
<th>Toxicity Classification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mouse</td>
<td>6-10</td>
<td>1-4 g/kg</td>
<td>2.00 g/kg</td>
<td>slightly toxic</td>
<td>Boehm and Williams, 1943</td>
</tr>
<tr>
<td>mouse</td>
<td>not given</td>
<td>not given</td>
<td>3.50 g/kg</td>
<td>slightly toxic</td>
<td>Lehman, 1950</td>
</tr>
<tr>
<td>mouse</td>
<td>not given</td>
<td>0.5-2.5 g/kg</td>
<td>1.70 g/kg</td>
<td>slightly toxic</td>
<td>Karplyuk, 1959</td>
</tr>
<tr>
<td>mouse</td>
<td>not given</td>
<td>not given</td>
<td>2.85 g/kg</td>
<td>slightly toxic</td>
<td>Life Sciences Research Office, 1973</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>0.5-2.5 g/kg</td>
<td>2.60 g/kg</td>
<td>slightly toxic</td>
<td>Karplyuk, 1959</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>not given</td>
<td>3.60 g/kg</td>
<td>slightly toxic</td>
<td>Dacre, 1960</td>
</tr>
<tr>
<td>rat</td>
<td>2-18</td>
<td>2-5 g/kg</td>
<td>3.8 g/kg</td>
<td>slightly toxic *</td>
<td>Orten et al. 1948</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>not given</td>
<td>3.00 g/kg</td>
<td>slightly toxic</td>
<td>Life Sciences Research Office, 1973</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>not given</td>
<td>2.50 g/kg</td>
<td>slightly toxic</td>
<td>Daniyalov, 1966</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>not given</td>
<td>5-7 g/kg</td>
<td>practically non-toxic *</td>
<td>Van Esch, 1955</td>
</tr>
<tr>
<td>rat</td>
<td>not given</td>
<td>not given</td>
<td>4 g/kg</td>
<td>slightly toxic</td>
<td>Tanaka et al. 1979</td>
</tr>
</tbody>
</table>
Table 4 (continued). Acute Oral Toxicity of Propyl Gallate

<table>
<thead>
<tr>
<th>Animal</th>
<th>Number/group</th>
<th>Dose</th>
<th>LD₅₀</th>
<th>Toxicity Classification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>5</td>
<td>0.1 - 4.0 g/kg</td>
<td>2.1 g/kg</td>
<td>slightly toxic</td>
<td>Litton Bionetics, 1974</td>
</tr>
<tr>
<td>rat</td>
<td>10</td>
<td>5 g/kg</td>
<td>>5 g/kg</td>
<td>practically non-toxic</td>
<td>Litton Bionetics, 1974</td>
</tr>
<tr>
<td>hamster</td>
<td>not given</td>
<td>not given</td>
<td>2.48 g/kg</td>
<td>slightly toxic</td>
<td>Life Sciences Research Office, 1973</td>
</tr>
<tr>
<td>rabbit</td>
<td>not given</td>
<td>not given</td>
<td>2.75 g/kg</td>
<td>slightly toxic</td>
<td>Life Sciences Research Office, 1973</td>
</tr>
<tr>
<td>pig</td>
<td>not given</td>
<td>2 - 6 g/kg</td>
<td>>g g/kg</td>
<td>practically non-toxic</td>
<td>Van Esch, 1955</td>
</tr>
</tbody>
</table>

a deaths due to asphyxia or cardiorespiratory failure; autopsy revealed dilatation of visceral and peripheral blood vessels and inflated lungs
b kidney damage seen in dead animals
c pleural fluid and distended intestines seen in dead animals
d no deaths

Three lipstick formulations containing Propyl Gallate were evaluated by an acute oral toxicity study using rats. The test material was given by gastric intubation. No deaths occurred in the separate tests of two lipstick formulations containing 0.005 percent Propyl Gallate up to an exposure of 5.0 g/kg of the formulation (Stillmeadow, 1977a, b) The third formulation, containing less than 1 percent Propyl Gallate, produced diarrhea in the test animals at all doses up to 10 ml/kg of the formulation. No deaths occurred at any dose. No lesions were found in the test animals at necropsy (CTFA, 1980d).

Two suntan preparations, a sun protection stick and a suntan cream, each containing 0.003 percent Propyl Gallate, were evaluated by acute oral toxicity studies. Both were administered by gavage to 10 rats. The sun protection stick was administered as a 50 percent solution in olive oil at a single dose of 25 g/kg, and the suntan cream was administered full strength at a single dose of 50 ml/kg. Rats were observed for 14 days; no deaths or toxic effects resulted from the administration of either suntan preparation. The investigators concluded that the sun protection stick and suntan cream were practically nontoxic and nontoxic, respectively (CTFA, 1976; CTFA, 1977).

Intraperitoneal Toxicity

The acute intraperitoneal (IP) toxicity of Propyl Gallate was studied in rats. Groups of 2 to 18 animals received single IP injections of 0.2 to 0.5 g/kg Propyl Gallate. The acute IP LD₅₀ was determined to be 0.38 g/kg. Death usually occurred within 10 to 60 minutes postinjection and appeared due to asphyxia or
cardiovascular failure. Necropsies of animals that died revealed dilatation of visceral and peripheral blood vessels, especially those leading to the adrenal glands, and inflated lungs (Orten et al. 1948).

Dermal Toxicity

Table 5 presents a summary of acute dermal toxicity data in which Propyl Gallate was practically nonirritating to rabbit and guinea pig skin in five tests using concentrations as high as 10 percent (in propylene glycol) and as low as 0.003 percent (in a formulation).

In a study by Boehm and Williams (1943), a 10 percent solution of Propyl Gallate in propylene glycol was applied to the shaved intact skin of guinea pigs for 48 hours. No local lesions or primary irritation were observed.

Modak and Rao (1971) injected Propyl Gallate, at concentrations of 0.5 and 1.0 percent in saline, intradermally into the shaved skin of each of 3 albino rabbits. Positive and negative controls were included in the study. Ten minutes later, 10 mg/kg trypan blue were administered intravenously. Treated sites were observed 1.5 hours later for tissue irritation (based on the amount of tissue coloration). Propyl Gallate at 0.5 and 1.0 percent resulted in a mean irritation score of 2 (maximum score = 16). The authors concluded that Propyl Gallate was practically nonirritating.

As reported by CTFA (1980a), a primary skin irritation test on the intact and abraded skin of 6 rabbits was conducted using a lipstick formulation containing less than 1 percent Propyl Gallate. The test material was applied for 24 hours under an occlusive wrap. Upon removal of the wrap, the test sites were scored for erythema and edema at 24 and 72 hours. No erythema was observed. A very slight edema at 3 intact and 3 abraded sites and a slight edema at 1 abraded site were observed at 24 hours, but none at 72 hours. The formulation gave a Primary Irritation Index (PII) of 0.33 and was considered not a primary irritant.

A primary skin irritation test (CTFA, 1977a) was conducted to evaluate a suntan cream containing 0.003 percent Propyl Gallate. Test samples weighing 0.5 g were applied to the intact and abraded skin of each of 6 rabbits. Sites were washed and rinsed after 24 hours and reactions scored 30 minutes later. This procedure was repeated for three applications. Five rabbits had grade 1 erythema (scale of 0 to 4) at 48 and 72 hour readings; no edema was reported. The suntan cream was not considered a primary skin irritant.

A modified Draize skin irritation test (CTFA, 1980b) was used to evaluate a suntan oil containing
0.003 percent Propyl Gallate. Test samples of 0.5 ml were applied to the shaved skin of each of 6 rabbits. Sites were washed and rinsed after 6 hours and reactions scored 30 minutes later. Similar applications were made on the following 2 days. Average scores of 1 (scale of 0 to 8) were found in 1 rabbit at 48 hours and 1 at 72 hours. The suntan oil was practically nonirritating under the test conditions.

Table 5. Acute dermal toxicity of Propyl Gallate

<table>
<thead>
<tr>
<th>Material Tested</th>
<th>Type of Test</th>
<th>Animals</th>
<th>Results/Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propyl Gallate at 10% in propylene glycol</td>
<td>Applied to shaved skin for 48 hours</td>
<td>Unspecified no. of guinea pigs</td>
<td>No local lesions or primary irritation</td>
<td>Bohemln and Williams, 1943</td>
</tr>
<tr>
<td>Propyl Gallate at 0.5 and 1.0% in saline</td>
<td>Intradermal injection</td>
<td>3 rabbits</td>
<td>Score of 2 (max = 16); practically nonirritating</td>
<td>Modak and Rao, 1971</td>
</tr>
<tr>
<td>Propyl Gallate at < 1% in a lipstick</td>
<td>Primary skin irritation test on intact and abraded skin; 24 hour application</td>
<td>6 rabbits</td>
<td>PII = 0.33 (max = 8); not a primary irritant</td>
<td>CTFA, 1980a</td>
</tr>
<tr>
<td>Propyl Gallate at 0.003% in a suntan cream</td>
<td>Primary skin irritation test on intact and abraded skin; 3 24-hour applications</td>
<td>6 rabbits</td>
<td>5 rabbits exhibited grade 1 (max score of 4) erythema at 48 and 72 hours; no edema; not a primary skin irritant</td>
<td>CTFA, 1977a</td>
</tr>
<tr>
<td>Propyl Gallate 0.003% in a suntan oil</td>
<td>Primary skin irritation test on intact skin, three 6-h applications</td>
<td>6 rabbits</td>
<td>One score of 1 (max score of 8) at 48 hours and at 72 hours; practically nonirritating</td>
<td>CTFA, 1980b</td>
</tr>
</tbody>
</table>

Acute Ocular Irritation

As shown in Table 6, Propyl Gallate was nonirritating to rabbit eyes in 9 tests of cosmetic formulations containing less than 1 percent Propyl Gallate.

An acute eye irritation test on 6 rabbits was conducted using a lipstick formulation containing less than 1 percent Propyl Gallate. The left eye received 0.1 ml of the test formulation; the right eye was untreated and served as a control. A mild conjunctival erythema in 1 rabbit was reported. The latter was graded as a response of 2 (maximum score of 110). The lipstick formulation was not considered an eye irritant (CTFA, 1980c).

Two suntan preparations, a sun protection stick and a suntan cream, each containing 0.003 percent
Propyl Gallate, were tested for acute eye irritation by the Draize technique (Draize, 1959). A 0.1 g sample of each product (full strength) was instilled into the conjunctival sac of 9 rabbits. Three rabbits received no further treatment, the eyes of the second 3 were rinsed with water 2 seconds after instillation, and the eyes of the third 3 were rinsed 4 seconds after instillation. Reactions were scored at 24, 48, and 72 hours and 4 and 7 days. Six of the nine rabbits receiving the sun protection stick had conjunctival irritation (1 + on a scale of 0 to 3) at 24 hours. Only 2 rabbits had conjunctival irritation at 48 hours, and all eyes were clinically normal at 72 hours. Five of the nine rabbits receiving the suntan cream showed conjunctival irritation (1 on a scale of 0 to 3), and 2 had chemosis (1 on a scale of 0 to 4) at 24 hours. All eyes were normal at 48 hours. The products were not considered eye irritants (CTFA, 1977c,d).

Six cosmetic formulations, each containing 0.003 percent Propyl Gallate, were tested according to the Consumer Product Safety Commission (CPSC) test for eye irritants as described in the Code of Federal Regulations (16 CFR 1500.42). Six rabbits were used to evaluate each formulation; one eye of each rabbit received a 0.1 ml sample of the product and the other eye served as a control. One group of 6 rabbits also served as an untreated control. Reactions were scored on a standard Draize scale at 24, 48, and 72 hours and 7 days. The formulations produced no or very slight irritations, all of which progressively decreased to a 0 score at 72 hours. None of these formulations were considered eye irritants (CTFA, 1981a,b).

Table 6. Acute ocular irritation - product tests

<table>
<thead>
<tr>
<th>Product</th>
<th>Concentration of Propyl Gallate</th>
<th>Test</th>
<th>Animals</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipstick</td>
<td><1%</td>
<td>Draize</td>
<td>6 rabbits</td>
<td>nonirritant</td>
<td>CTFA, 1980c</td>
</tr>
<tr>
<td>Sun protection stick</td>
<td>0.003%</td>
<td>Draize</td>
<td>9 rabbits</td>
<td>nonirritant</td>
<td>CTFA, 1977c</td>
</tr>
<tr>
<td>Suntan cream</td>
<td>0.003%</td>
<td>Draize</td>
<td>9 rabbits</td>
<td>nonirritant</td>
<td>CTFA, 1977d</td>
</tr>
<tr>
<td>6 cosmetic formulations</td>
<td>0.003% @</td>
<td>CPSC test for eye irritants</td>
<td>6 rabbits @</td>
<td>nonirritants</td>
<td>CTFA, 1981a,b</td>
</tr>
</tbody>
</table>
SUBCHRONIC EFFECTS

Oral Toxicity

Rats and pigs (strain/breed and number not specified) were fed diets containing 0.035 to 0.5 percent and 0.2 percent Propyl Gallate, respectively, for 3 months. Animals were then killed and necropsied. Propyl Gallate, at the concentrations tested, had no effect on growth, reproduction, organ weights, blood chemistry values, morphology of blood cells, or histopathologic changes of tissues of treated animals when compared to controls (Van Esch, 1955).

Propyl Gallate was included in the diets of mice and rats at doses of 170 and 340 mg/kg (mice) or 260 and 520 mg/kg (rats) for 2.5 months. Ingestion of Propyl Gallate resulted in decreased growth rates as well as reductions in serum catalase, peroxidase, and cholinesterase activities (Karplyuk, 1959).

Six groups of 12 weanling rats each were fed diets containing 0 to 0.5 percent Propyl Gallate for 6 weeks. Animals were then killed, blood samples were collected and analyzed, liver and adrenal glands were examined microscopically, and total lipid content of the liver was determined. Propyl Gallate had no significant effect on growth rate at any dose. Weights of the liver and adrenal gland were normal, and no pathologic changes could be attributed to treatment. Propyl Gallate had an insignificant effect on serum concentration of cholesterol and sodium, on the cholesterol content of the adrenal gland, and lipid content of the liver. Propyl Gallate did not produce significant toxic effects in rats when ingested and was considered safe for use in food (Johnson and Hewgill, 1961).

Propyl Gallate, fed to rats for 1 or 3 months, did not affect development of enterokinase in the mucosa of the upper portion of the small intestine, nor did it affect pancreatic lipolytic enzyme secretion (Karplyuk, 1968).

Four groups of 8 rats each and one group of 7 rats received doses of 0 to 500 mg/kg per day Propyl Gallate by stomach tube for 1 week. Animals were killed 24 hours after the final dosing. Four additional groups of 6 rats each were maintained at the high dose (500 mg/kg per day) and killed 14 and 28 days after the last dosing. Histopathological examination and biochemical analyses were performed on the liver of all animals. Positive (carbon tetrachloride) and negative (arachis oil) controls were included in the study. Propyl Gallate had no effect on hepatic weight or on hepatic enzymic activity. Slight fatty change was observed in
the liver of rats given 100, 200, and 500 mg/kg per day. This effect was not dose dependent and not statistically significant. At the highest dose, extensive fatty change was observed 24 hours after the final dosing, but the severity decreased significantly after 14 days of recovery. By 28 days, the liver of most animals had returned to normal. Propyl Gallate also significantly increased the number of abnormal mitotic figures in hepatocytes. At the highest dose tested, this effect persisted throughout the first 14 days of the recovery period but had disappeared by the twenty-eighth day posttreatment (Feuer et al. 1965).

Dermal Toxicity

Dermal toxicity was studied using Propyl Gallate, 20 percent in lanolin, applied daily, 5 times per week for 6 weeks to the ears of 53 male guinea pigs. Skin biopsies were performed weekly during treatment and at 4-day intervals for 2 weeks after discontinuation of treatment. Tissues were prepared for electron microscopic examination. Treatment with Propyl Gallate resulted in reversible hyperplasia of the epidermis (Riley and Seal, 1974).

The effect of Propyl Gallate on skin depigmentation was studied in black guinea pigs. The test material was applied daily for 1 to 6 months at concentrations 0.1 to 10 percent to the epilated dorsal skin of groups of 2 to 5 animals. Positive (monomethyl ether of hydroquinone and tertiary butyl catechol) and negative (solvent) controls were also used. Depigmentation and irritation were assessed regularly; punch biopsies were also taken and examined microscopically. Propyl Gallate induced some irritation but did not result in depigmentation (Gellin et al. 1979).

CHRONIC ORAL TOXICITY

Orten et al. (1948) fed 10 groups of 10 to 20 weanling albino rats diets containing either 0, 0.00117 to 2.34 percent Propyl Gallate, or an antioxidant mixture containing 2 percent Propyl Gallate for 2 years. Some animals were killed at various times throughout the study; these animals, along with animals that died, were necropsied. Growth, blood parameters, organ weights, and histopathological changes were monitored. Rats given 1.17 or 2.34 percent Propyl Gallate had significantly reduced growth rates, but growth of rats at lower concentrations was similar to controls. When the concentration of Propyl Gallate was lowered for these animals, growth returned to normal. No other gross effects were observed. Animals of the 1.17 and 2.34 percent Propyl Gallate groups had significantly lower hemoglobin values and erythrocyte counts. The
only consistent abnormalities observed upon necropsy were mottled kidneys. On microscopic examination, tubular damage and the presence of albuminous casts were found in animals of the 1.17 and 2.34 percent groups. Rats fed these concentrations also had significantly higher mortality rates.

Two groups of 20 guinea pigs each (14 males and 6 females) were fed diets containing 0 or 0.0117 percent Propyl Gallate for 14 to 15 months. Males and females were mated within each group after 1 year of feeding; 6 offspring were observed for 2 months following birth. Animals were observed and killed, and biological parameters were monitored. Propyl Gallate had no effect on growth rate, appearance, or reproduction. No abnormalities were found at necropsy or at histopathological examination of organs of Propyl Gallate-treated guinea pigs.

Two groups of 5 and 7 dogs were fed diets containing 0 and 0.0117 percent Propyl Gallate, respectively, for 14 months. No alterations in behavior, appearance, and physical activity, as well as blood and urinary parameters, were found. The results indicated that, at the dose tested, Propyl Gallate did not change renal or hepatic function (Orten et al. 1948).

The effect of Propyl Gallate on mortality was studied in rats. Six groups of 16 animals each were fed diets containing 0 to 5 percent Propyl Gallate for 2 years. Animals were killed at various times throughout the study and were necropsied along with deceased animals. None of the treated groups had significant differences in the number of animals alive after 2 years of feeding when compared to controls. The only significant pathological finding was patchy hyperplasia in the stomach of rats fed the 5 percent Propyl Gallate diet. Propyl Gallate was concluded to be safe for use in foods (Lehman et al. 1951).

Seven groups of 26 rats each were fed diets containing bread made with various concentrations of anti-oxidants, resulting in effective concentrations of 0, 0.405, or 20.25 mg Propyl Gallate per kg diet. Rats were maintained on the diets for 1 year. Food consumption, body weight, mortality, appearance, and behavior were monitored. At 13 and 26 weeks, 3 rats of each sex from each group were killed and necropsied, and tissues were examined microscopically, as were all animals that died during the experiment. At the conclusion of the feeding study, the remaining animals were killed and necropsied. Propyl Gallate had no significant effects on growth rates or organ weights. A low incidence of renal tubular degeneration and glomerulonephritis was observed in Propyl Gallate-treated female rats (Graham et al. 1954).
In a subsequent study, the investigators added the bread ingredients at the same doses directly to the basal diet of 14 groups of 15 rats each for 32 weeks instead of baking the bread ingredients prior to addition to the diet. No significant differences in body weight, hematological parameters, organ lesions, appearance, behavior, mortality, or tissue weight were found attributable to the ingestion of up to 20.25 mg Propyl Gallate per kg diet (Graham and Grice, 1955).

Groups of rats and pigs (strain/breed unspecified) were given 0.035 to 0.5 percent and 0.2 percent Propyl Gallate, respectively, in the diet for more than 3 months until a few litters had been produced. All animals were then killed and necropsied. Propyl Gallate induced no significant changes in growth or reproduction. No significant abnormalities that could be attributed to ingestion of Propyl Gallate were observed at necropsy. In older rats at 0.035 percent Propyl Gallate and in a "few" controls, calcium deposits and tubular protein casts were found in the kidneys. These changes were not observed in rats fed higher concentrations of Propyl Gallate and were considered unrelated to the administration of Propyl Gallate. In rats and pigs on the 0.035 percent Propyl Gallate diet, organ weights and hematologic values did not differ significantly from controls (Van Esch, 1955).

In a chronic feeding study, groups of 46 rats were fed diets containing either a mixture of food additives including Propyl Gallate or no additives. In the mixture, the dose of each compound was 35 times the average daily human consumption. There were no differences in weight gain, fertility, or survival between control and test animals (Tarjan et al. 1965).

A mixture of the antioxidants butyloxyanisole and Propyl Gallate, at a ratio of 2:1, at 100 times exaggeration with its prolonged feeding to male and female white rats (type unspecified) increases mortality of experimental animals compared to those fed normal feed (Daniilov, 1966).

Dacre (1974) fed 3 groups of 50 albino mice each diets containing 0, 0.5, or 1.0 percent Propyl Gallate for 90 weeks. Body weights, feed consumption, and hematological parameters were monitored. All surviving mice were killed and necropsied at 21 months. No significant toxic effects were observed. No significant differences in body weight, growth, gross abnormalities, or hematological parameters were observed between test and control animals. The author noted that the 1 percent intake of Propyl Gallate corresponded to a dose of 1.5 g/kg per day, whereas the no-effect level reported by Orten et al. (1948)
corresponded to an intake of 0.05 g/kg per day.

DERMAL SENSITIZATION

Kahn et al. (1974) conducted 3 separate tests to determine the sensitizing potential of Propyl Gallate in guinea pigs. In the first test, Propyl Gallate (5 percent in complete Freund’s adjuvant) was administered intradermally every other day for 6 days into the clipped dorsal skin of 2 female guinea pigs. Ten days after the last injection, occlusive patches containing 0.1, 0.5, and 2 percent Propyl Gallate in alcohol were each applied to the clipped ventral skin for 24 hours. Sites were scored at 24 and 48 hours. No sensitization occurred at 0.1 percent, but it did occur at the other 2 test concentrations. Reactions gradually subsided within 7 to 10 days. Tests performed 3 months later using these sensitized guinea pigs gave similar responses. There was no cross-sensitivity with pyrogallol, gallic acid, or methyl gallate; there was weak cross-sensitivity with lauryl gallate.

In the second study, 20 percent Propyl Gallate in alcohol was applied for 24 hours under occlusion to clipped shoulder skin of 2 guinea pigs every third day for 9 days. Two weeks after removal of the final induction patch, occlusive challenge patches containing 0.1, 1, or 5 percent Propyl Gallate were applied to the clipped ventral skin for 24 hours. Sites were scored at 24 and 48 hours. Mild to moderate irritation was produced by 1 and 5 percent Propyl Gallate at 24 hours and by 5 percent at 48 hours. When animals were retested 3 months later, severe reactions were observed.

In the third study, 10 percent Propyl Gallate in alcohol and olive oil was administered orally to a group of 4 guinea pigs daily for 7 consecutive days. Two weeks later, the animals were given intradermal injections of 5 percent Propyl Gallate and 0.05 percent dinitrochlorobenzene (DNCB) in complete Freund’s adjuvant into the clipped dorsal skin, every other day for 6 days. Additionally, a group of 2 animals received the intradermal injections but did not participate in the Propyl Gallate feeding induction. Ten days after the final injection, 24-hour occlusive challenge patches containing 0.1, 0.5, or 2 percent Propyl Gallate and 0.1, 0.05, or 0.01 percent DNCB were applied to previously untested skin sites.

Sites were scored at 24 and 48 hours. None of the Propyl Gallate-fed animals reacted to Propyl Gallate challenge patches, but all animals reacted to challenge with DNCB. Guinea pigs not orally dosed with Propyl Gallate developed mild or moderate to severe irritation to challenge patches containing 0.5
percent or 2 percent Propyl Gallate, respectively. At 0.1 percent, Propyl Gallate was nonsensitizing.

The authors concluded that Propyl Gallate was a strong sensitizer when given intradermally. By the cutaneous route, it was less sensitizing and required a much longer induction time. Specific tolerance to Propyl Gallate-induced contact sensitization occurred following ingestion (Kahn et al. 1974).

PHOTOTOXICITY

A phototoxicity test was used to evaluate a sun protection stick containing 0.003 percent Propyl Gallate. The product was applied full strength to one of the tape-stripped ears of each of 6 guinea pigs, the untreated ears serving as controls. One positive control with 8-methoxypsoralen and one unirradiated control with the sun protection stick were also maintained. Each guinea pig was exposed for 2 hours to UVA from two GE F8T5-BL lamps at a distance of 4 to 6 cm. Ears were evaluated for irritation 24 and 48 hours later. No irritation was seen in any of the 6 guinea pigs. The sun protection stick was not phototoxic under these test conditions (CTFA, 1977e).

GENOTOXICITY

Three different assays, a host-mediated assay, a cytogenic assay, and a dominant lethal assay, were used to evaluate the mutagenicity of Propyl Gallate.

The host-mediated assay consisted of three parts: an acute in vivo test, a subchronic in vivo test, and an in vitro study. In the acute test, 0 to 200 mg/kg Propyl Gallate was administered orally to each of 10 mice. Positive and negative controls were used. Animals then received intraperitoneally 2 ml S. typhimurium strain TA 1530 and G 46, as well as 2 ml S. cerevisiae strain D 3 indicator organisms. Animals were killed 3 hours later; peritoneal fluid was removed, bacterial counts were made, and the number of mutants was recorded. In the subchronic test, each of 10 mice received orally 0 to 3500 mg/kg Propyl Gallate daily for 5 consecutive days. Within 30 minutes after the last treatment, animals were inoculated with indicator organisms and treated as above. In the in vitro study, 0 to 100 µg/ml Propyl Gallate was added to plates containing the indicator organisms. After incubation, the number of mutants was recorded. Propyl Gallate induced no significant increases in mutant or recombinant frequencies with S. typhimurium or S. cerevisiae in these in vitro or in vivo host-mediated assays (Litton Bionetics, 1974).
The cytogenic assay also consisted of acute and subchronic in vivo tests and an in vitro study. In the acute test, groups of 15 rats were given 5 to 5000 mg/kg Propyl Gallate by gastric intubation. Four hours later, each animal received intraperitoneally 4 mg/kg colchicine in order to arrest bone marrow cells in C-mitosis. Five animals at each dose were killed at 6, 24, and 48 hours. Bone marrow was removed, and the chromosome preparations were scored for abnormalities. Positive and negative controls were used. In the subchronic study, groups of 5 mice received 0 to 5000 mg/kg Propyl Gallate daily for 5 consecutive days. Animals were killed 6 hours following the last dosing and treated as above. In the in vitro study, 0.5 to 50 μg/ml Propyl Gallate were added to human embryonic lung cultures in anaphase. Positive and negative controls were used. Chromosomal damage was then scored. Propyl Gallate induced no detectable significant aberrations in the bone marrow metaphase chromosomes of rats and induced no significant aberrations in the anaphase chromosomes of human tissue culture cells in vitro (Litton Bionetics, 1974).

In a dominant lethal assay, groups of 10 male rats received orally 0 to 5000 mg/kg Propyl Gallate once (acute study) or daily for 5 consecutive days (subchronic study). Positive and negative controls were used. Following treatment, males were mated with 2 virgin females per week for 7 or 8 weeks. Pregnant dams were killed 14 days after separation from treated males; the uteri were examined for resorption sites, late fetal deaths, and total implantations. No dose-response or time-trend patterns that would suggest a dominant lethal effect for Propyl Gallate were observed; Propyl Gallate was nonmutagenic under the study conditions (Litton Bionetics, 1974).

A chromosomal aberration assay was used to study the activity of Propyl Gallate. The test material was added to cultures of Chinese hamster fibroblast cells at doses up to 0.04 mg/ml in saline. Chromosome preparations were made 24 hours later. Propyl Gallate induced gaps, breaks, exchanges, and fragmentations in 20 percent of the cells at a dose of 0.023 mg/ml. The authors found that this compound produced significant aberrations under these test conditions (Ishidate et al. 1978).

The cytogenetic activity of Propyl Gallate was tested in a diploid human embryo fibroblast cell line. Propyl Gallate was added to cell cultures at doses of 0 to 0.0212 mg/ml for 26 to 48 hours. Chromosome preparations were then made, and aberrations as well as sister chromatid exchanges were scored. At the highest dose tested, Propyl Gallate was toxic to cells. At the lower dose (0.0021 mg/ml), Propyl Gallate did
not induce significant chromosomal aberrations or sister chromatid exchanges (Sasaki et al. 1980).

In an Ames test, Propyl Gallate was tested for mutagenic activity in *S. typhimurium* strains TA1535, TA1537, TA1538, TA98, and TA100, as well as *E.coli* strain WP2 at concentrations of 0.03 to 1000 µg/plate. Assays were performed in the presence and absence of Aroclor 1254-induced rat hepatic microsomes. Propyl Gallate was toxic to all strains at 333 and 1000 µg/plate. No significant mutagenicity was produced either with or without metabolic activation in all indicator organisms (Simmon and Eckford, 1978).

In another Ames test, Propyl Gallate was added to cultures of *S. typhimurium* strains TA98 and TA100 at concentrations of 0.1 to 10 mM. Assays were performed in the presence and absence of Aroclor 1254-induced rat hepatic microsomes. Propyl Gallate was nontoxic to cells except at the highest test concentration and did not induce significant mutagenic frequencies both with and without activation when compared to solvent control values (Rosin and Stich, 1980).

Shelef and Chin (1980) also used the Ames test to study the mutagenicity of Propyl Gallate. The test material was added to cultures of *S. typhimurium* TA98 and TA100 at doses of 0 to 50 µg/plate. Assays were performed in the presence and absence of Aroclor 1254-induced rat liver microsomes. Whereas Propyl Gallate was toxic to cells at the highest dose tested, no mutagenicity was found both with and without metabolic activation.

In a study by Kawachi et al. (1980), the Ames test (with TA100 and TA98), a rec-assay (with *Bacillus subtilis*), a chromosomal aberration/sister chromatid exchange assay (in hamster lung and human embryo fibroblasts), an in vivo chromosomal aberration test (in rat bone marrow), and a silkworm mutation assay were used to determine the mutagenicity of Propyl Gallate. In all assays, Propyl Gallate was assayed without metabolic activation. Propyl Gallate was mutagenic in the rec-assay and in the hamster lung chromosomal aberration assay. In all other test systems, Propyl Gallate was nonmutagenic.

Jacobi et al. (1998) found that > 0.25 µM Propyl Gallate with 5 µM copper (as CuCl2) induced single strand breaks in PM2 DNA. The same concentrations of Propyl Gallate with 100 µM copper induced double strand breaks. DNA strand breakage was prevented by the addition of catalase of the Cu(I) chelator neocuproine. Neither Propyl Gallate or CuCl2 alone caused any strand breaking. In human fibroblasts, 0.15 to 0.5 mM Propyl Gallate with 2.5 mM CuCl2 induced DNA strand breaks. Cell viability, as measured by the
MTT assay, was not reduced by more than 10%, but cell growth was inhibited. The authors proposed that Propyl Gallate interacts with copper by redox reactions, and reactive species are formed.

Chen and Chung (2000) reported that 125 to 1000 µg/plate Propyl Gallate was not mutagenic in Salmonella strains TA98 and TA100. Propyl Gallate (0.1 or 0.2 µmol) was also found not to be anti-mutagenic, as it did not protect TA98 or TA100 from known direct mutagens.

Tayama and Nakagawa (2001) reported that Propyl Gallate at 0.25 to 1.5 mM with S9 activation induced sister chromatid exchanges, chromosomal aberrations, and endoreduplications in Chinese hamster ovary (CHO-K1) cells, followed by delays in the cell cycle.

Kubo et al (2002) studied the anti-Salmonella activity of several alkyl gallates. Up to 3200 µg/ml Propyl Gallate showed no activity against *S. choleraesuis*.

Mutagenesis Enhancement

Rosin and Stich (1980) reported that Propyl Gallate enhanced the mutagenic effect of N-hydroxy-2-acetylamino fluorine and 4-nitroquinoline-1-oxide (4-NQO) in *S. typhimurium* strains TA98 and TA100, respectively. Bacterial cultures were suspended in a mixture of Propyl Gallate, chemical to be tested, dimethyl sulfoxide, and saline. A 580 to 700 percent increase in mutation frequency was observed without metabolic activation only. Propyl Gallate also induced a 700 percent increase in the mutagenic frequency of 4-NQO in TA98 and was also toxic to cells (only 16 percent cell survival). Therefore, Propyl Gallate may enhance the reduction of 4-NQO to a mutagenic product.

Antimutagenesis

Propyl Gallate inhibited the mutagenic activity of dimethylnitrosamine in a DNA-repair test. They suggested that antioxidants may act as antimutagens by preventing the formation of reactive carcinogens or by competing with proximate carcinogens or mutagens (Lo and Stitch, 1978).

In two studies, Propyl Gallate (25 to 125 µM and 410 nmol/plate) inhibited the mutagenic activity of benzo[a]pyrene (BP) metabolites in *S. typhimurium* strain TA98 (Rahimtula et al . 1977; Calle and Sullivan, 1982).

Rahimtula et al. (1977) claimed that Propyl Gallate inhibited BP-hydroxylase in the microsomal preparation.
Springarn and Garvie (1979) reported that Propyl Gallate inhibited the formation of mutagenic pyrazine derivatives in sugar-ammonia systems when assayed in *S. typhimurium* TA98 and TA100 in the presence and absence of rat hepatic microsomes. In another study, Propyl Gallate inhibited the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine and N-acetoxy-2-acetylaminofluorine in the same test organisms (Rosin and Stitch, 1979).

Propyl Gallate also reduced the mutagenic activity of pyrolys products of albumin (0.2 g Propyl Gallate to 1 g albumin) in Ames assays using *S. typhimurium* TA98 (Fukuhara et al. 1981). In addition, Propyl Gallate reduced the mutagenic activity of alicotxin B1 in *S. typhimurium* TA98 under metabolic activation, (Rosin and Stitch, 1980) but in a similar study, it slightly increased (by 50 to 100 percent at highest dose tested) the mutagenic effect of this carcinogen in *S. typhimurium* TA100 (Shelef and Chin, 1980).

CARCINOGENICITY

Propyl Gallate was tested for its ability to induce pulmonary tumors in groups of 30 strain A mice. The test material was injected intraperitoneally at doses of 0.6 or 2.4 g/kg, 3 times weekly for 8 weeks (24 injections). Positive, negative, and vehicle controls were also included in the study. At 24 weeks, animals were killed, and the lungs were examined for tumor formation and other abnormalities. No significant differences were observed in the number of pulmonary tumors between test and control animals (Stoner et al. 1973).

Propyl Gallate was tested for carcinogenicity by the National Toxicology Program (NTP) by feeding diets containing 6,000 or 12,000 ppm Propyl Gallate to 50 F344 rats and 50 B6C3F1 mice of each sex for 103 weeks. Control groups of 50 rats and mice of each sex were kept. Tumors of the preputial gland, pancreatic islet cells, and adrenal gland (pheochromocytomas) were found in low-dose male rats at significantly higher levels than in controls. However, they were not increased in the high-dose males and were within the range of historical controls. Similarly, thyroid follicular cell tumors occurred in the dosed male rats but were not significant in comparison to untreated controls and comparable to historical controls. Rare brain tumors were found in two low-dose female rats; none were found in the high-dose group. Adenomas of the mammary gland also occurred in the high-dose female rats but were not significant compared to controls.
Adenomas of the liver occurred in the high-dose female mice at a significantly higher level than in the concurrent controls, but this incidence was within the historical range for this tumor. All of these tumors were considered unrelated to the administration of Propyl Gallate. The high-dose male mice had a significant increase in malignant lymphomas relative to concurrent controls but not statistically significant when compared with the historical rate. Propyl Gallate was not considered to be carcinogenic in either species, although the increased number of malignant lymphomas in male mice may have been related to the administration of Propyl Gallate (NTP, 1982).

Abdo et al. (1986) maintained groups of 50 F344 rats and 50 B6C3F1 mice of each sex on diets containing 0, 2.5 or 6.0% d- mannitol or 0, 0.6 or 1.2% Propyl Gallate for 13 wk. Malignant lymphoma occurred with a positive trend in male mice (control 1/50, low dose 3/49, high dose 8/50), and the incidence in the high-dose group was significantly (p<0.05) higher that in the control group. However, since the incidence in the control group was much less than the historical control rate (36/398 or 9%) in this laboratory, this increase was not considered to be related to Propyl Gallate administration.

Anticarcinogenesis/Antitumorigenesis

Emanuel et al. (1959) reported that Propyl Gallate inhibited the activity of important oxidation-reduction enzymes necessary for the intensive biosynthetic processes of tumor cells in vitro. Further, Propyl Gallate (0.01 to 0.75 percent) selectively reduced the RNA content of tumor cells without significantly affecting the RNA content of normal, noncancerous cells. Tumor cells treated with this ingredient also lost their implantability into host animals. Lipchina et al. (1960) observed that Propyl Gallate (0.15 mg/ml) suppressed mitosis in Hela tumor cells; its selectivity for tumor cells was dependent upon concentration and time of exposure. Propyl Gallate also significantly increased the number of chromosome aberrations and altered the metabolic activity of tumor cells. These authors concluded that Propyl Gallate’s selectivity may be due to a difference in the content of natural inhibitors between tumor and normal cells.

Emanuel (1961) stated that Propyl Gallate can act specifically to suppress glycolysis, as well as the activities of cytochrome oxidase and many dehydrogenases.

Kukushkina et al. (1966a,b) reported that Propyl Gallate inhibited protein and nucleic acid biosynthesis in Erhlich ascites carcinomas and solid hepatomas, whereas in vivo it did not affect these
biosynthetic processes in healthy tissue. Furthermore, Propyl Gallate inhibited these processes in cultured human laryngeal cancer cells. Emanuel et al. (1976) reported that Propyl Gallate inhibited RNA formation in Ehrlich ascites carcinoma cell preparations. This effect probably was due to the interaction of Propyl Gallate with the SH groups of enzymes involved with RNA transcription.

McCay et al. (1981) observed that Propyl Gallate protected rats against the induction of tumors by dimethylbenzanthracene (DMBA). Six groups of 30 weanling rats were placed on diets containing polyunsaturated fat, saturated fat, or no fat, with or without addition of 0.3 percent Propyl Gallate. Fifty days later, half of each group were given 10 mg DMBA orally. Six months later, all rats were killed and examined for tumors. The results indicated that Propyl Gallate inhibited DMBA-induced tumorigenesis; however, both the amount of fat and degree of unsaturation affected the extent of inhibition.

Kozumbo et al. (1982) investigated the role of reactive oxygen species in tumor promotion by examining the effects of antioxidants on the 12-0-tetradecanoyl phorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity. Propyl Gallate (50 \text{ mol}) applied topically to mouse epidermis substantially inhibited TPA-induced ODC activity. Propyl Gallate may inhibit the promotion phase of carcinogenesis.

Radiation Co-effects

Aphanasjev et al. (1968) first reported the radio-sensitizing effect of Propyl Gallate on tumors. Multiple intraperitoneal injections of this ingredient enhanced the lethal action of local ionizing radiation for lymphosarcomas in mice. More Propyl Gallate-treated mice had regressing tumors than those receiving radiation alone; additionally, the growth of nonregressing tumors decreased in these test animals.

Odintsova and Kruglyakova, (1976) in experiments with isolated DNA, reported that the radioprotective effect of Propyl Gallate increased as the concentration of unoxidized Propyl Gallate (maximum effect at 1.65 x 10^{-2} \text{ M}) increased before radiation and likewise the radioprotective effect decreased as the time of pre-irradiation exposure to unoxidized and oxidized Propyl Gallate increased. This latter decrease in the radioprotective effect can, in some cases, result in radiosensitization; initial injury to DNA by Propyl Gallate before radiation enhances the injurious effects of radiation.

37
Inhibition of Nitrosamine Formation

Kawanishi et al. (1981) found that Propyl Gallate inhibited nitrosamine formation from aminopyrine and sodium nitrite in rat stomachs. Inhibition was as high as 55 percent at a dose of 100 μmol Propyl Gallate per kg body weight; Propyl Gallate was considered a relatively strong inhibitor. Similarly, Rao et al. (1982) observed that Propyl Gallate inhibited nitrosamine formation in human saliva from the interaction of salivary nitrite with aminopyrine and oxytetracycline by acting as a nitrite scavenger. Inhibition produced by 10 mM Propyl Gallate ranged from 42 to 53 percent at pH 3.

DEVELOPMENTAL AND REPRODUCTIVE TOXICITY

The teratogenic effect of Propyl Gallate was studied in 9 female rats by Telford et al. (1962). Animals were mated and then given a total dosage of 0.5 g per rat in the diet. On the twenty-second day of gestation, the rats were killed, and the young were removed for study. At the dose tested, Propyl Gallate was nontoxic to the pregnant rats, although it substantially increased fetal resorption rates (18.3 percent resorption; 77.7 percent litters with resorptions) when compared to controls (10.6 percent resorption; 40.8 percent litters with resorptions).

Daniialov (1966) delivered a 2:1 mixture of butyloxyanisole and Propyl Gallate at 100 times exaggeration in chronic tests carried out on male and female white rats (type unspecified). The test was performed on 3 groups of male and 3 groups of females with 10 animals each. Five were used in the first round and five in the second round. The animals in the 1st and 4th groups were administered the antioxidants (butyloxyanisole and Propyl Gallate) at 100 times (butyloxyanisole 20 mg/kg, Propyl Gallate 10 mg/kg) the amount which can enter a human body. Animals of the 2nd and 5th groups were administered a mixture of antioxidants at 10 times the amount (butyloxyanisole 2 mg/kg, Propyl Gallate 1 mg/kg). The 3rd and 6th group were used as the control. The antioxidants were administered in rendered pig fat with feed pellets. In the 6th month, the animals of the two groups were mated to obtain a 2nd generation. It was found that the rats which were fed antioxidants unable to reproduce. Of the 5 animals in Group 4, none reproduced. Of the 5 females of Group 5, only 1 had offspring, whereas among the control females 3 had offspring.

To confirm these results, the experiment was repeated on the other animals. In the second round, of
the 5 rats which received the mixture of antioxidants at 100 times exaggeration, none reproduced. Of the 5 animals to which antioxidants were administered at 10 times exaggeration, only one had a litter. Among the control animals, 4 had young. It was concluded that the administration of butyloxyanisole and Propyl Gallate to white rats causes sterility (Daniilov, 1966).

The teratogenic effects of Propyl Gallate were studied in rats, mice, and hamsters. Twelve groups of 22 to 25 pregnant animals were given orally 3.0 to 300 mg/kg (rats, mice) or 2.5 to 250 mg/kg (hamsters) Propyl Gallate. Doses were given daily from Day 6 to Day 10 (hamsters) or Day 15 of gestation (rats, mice). Positive (aspirin) and negative (corn oil) controls were used. Animals were observed for signs of toxicity, and body weight was monitored. On gestation Day 14 (hamsters), 17 (mice), or 20 (rats), all dams were killed and the fetuses removed. Numbers of implantation sites, resorption sites, and live and dead fetuses were recorded. Urogenital tracts of females were examined for abnormalities. All fetuses were examined for visceral, skeletal, and external abnormalities. Oral administration of up to 250 mg/kg Propyl Gallate for 5 consecutive days in hamsters or up to 300 mg/kg Propyl Gallate for 10 consecutive days in rats and mice had no effect on nidation or on maternal or fetal survival. The number of visceral, skeletal, and external abnormalities observed in the test group fetuses did not differ significantly from that of negative control groups (FDRL, 1972b).

A similar teratology study was performed on 4 groups of 20 to 50 pregnant rabbits given orally 2.5 to 250 mg/kg Propyl Gallate daily from Day 6 to Day 18 of gestation. Positive (6-aminonicotinamide) and negative (corn oil) controls were used. Ingestation of up to 250 mg/kg Propyl Gallate for 13 consecutive days during gestation had no effect on nidation or maternal or fetal survival. The number of visceral, skeletal, and external abnormalities observed in the test group fetuses did not differ significantly from negative control groups (FDRL, 1973).

Desesso (1981) studied the teratological effects of Propyl Gallate on rabbits. Each rabbit received a subcutaneous injection of 634 mg/kg Propyl Gallate in a water-ethanol vehicle on the twelfth gestational day. Two control groups were kept, one receiving the vehicle and the other remaining untreated. On the twenty-ninth day, the rabbits were killed and examined for resorptions and fetuses. No malformations and a low incidence of resorption were found in the 6 litters obtained from Propyl Gallate-treated rabbits. Weights
of the fetuses in the Propyl Gallate group were significantly higher than those of the negative controls; however, they were similar to those of the vehicle controls.

In another teratogenesis study, groups of 18 to 20 pregnant Wistar rats were fed diets containing 0, 0.4 percent (0.35 g/kg), 1 percent (0.88 g/kg), or 2.5 percent (2.04 g/kg) Propyl Gallate starting on Day 1 of gestation. On the twentieth day of gestation, 13 of 18 rats of the 2.5 percent group and 15 of 20 rats of the other groups were killed for fetal examination. Implantation sites and numbers of live and dead fetuses were counted; examinations of fetuses for organ and skeletal anomalies were then performed. The remaining dams from each group were allowed to give birth. Offspring were observed for 8 weeks, then killed, and tissues were examined microscopically for visceral and skeletal abnormalities. At the highest concentration tested, maternal body weight and feed consumption were significantly lower than those of controls. However, no other signs of toxicity were observed in these rats. Body weight of fetuses at the highest concentration of Propyl Gallate was reduced but not significantly so. There was no difference in fetal mortality between control and test rats. Additionally, no significant incidence of external or internal organ abnormalities occurred in test fetuses. Although skeletal abnormalities were observed in some of the fetuses of Propyl Gallate-treated rats, they were considered to be spontaneous. The only possible compound-related finding was a significant number of fetuses obtained from the 2.5 percent group with an insufficient number of caudal vertebrae. The only significant postnatal effect produced by Propyl Gallate was decreased viability in the 1 and 2.5 percent dose groups; this was due to cannibalism of the newborn by the dams. No behavioral or morphological changes were observed in the newborns from test mothers. Propyl Gallate was nonteratogenic (Tanaka et al. 1979).

Inhibition of Developmental and Reproductive Toxicity

King (1964) reported on Propyl Gallate inhibition of teratogenesis induced by certain chemicals. When fed to vitamin E-deficient pregnant rats, Propyl Gallate prevented the teratogenic effects of the vitamin deficiency, as the incidence of congenital abnormalities and resorptions was reduced. Propyl Gallate was added to the diet at concentrations of 0 to 0.4 percent along with doses of 0 to 10 mg/rat vitamin E. On the twenty-first day of gestation, the rats were killed and the fetuses were examined. At 0.025 percent, Propyl Gallate did not reduce the frequency of vitamin E deficiency-induced malformations; at 0.4 percent alone or
at lower concentrations with vitamin E supplements, Propyl Gallate reduced the teratogenic effects.

Desesso (1981) studied the effect of Propyl Gallate on hydroxyurea (HU)-induced teratogenesis. Various amounts of Propyl Gallate (362-906 mg/kg) and HU were injected simultaneously into rabbits or administered as a mixed solution on the twelfth gestational day. The highest dose of Propyl Gallate (906 mg/kg) was toxic to the pregnant animals, although increasing amounts of Propyl Gallate inhibited the effects of HU in a dose-response relationship. Propyl Gallate reduced the number of malformed fetuses and resorptions, the severity of anomalies, and the range of HU-induced defects. The mixed solution of Propyl Gallate and HU was more efficacious than simultaneous injection of the compounds. However, data obtained by thin-layer chromatography indicated that the two compounds do not react chemically. The length of time the mixed solution was allowed to stand prior to injection also had no effect on the results. Desesso suggested that the antioxidant properties of Propyl Gallate acted within the embryo to reduce the severity of HU teratogenesis.

CLINICAL ASSESSMENT OF SAFETY

IRRITATION AND SENSITIZATION

Table 7 presents a summary of dermal irritation and sensitization clinical studies of Propyl Gallate and cosmetic formulations containing Propyl Gallate.

Propyl Gallate, as a 10 percent solution in propylene glycol, was applied to the skin of the back of the hand of each of 2 subjects for 24 hours. No skin irritation was observed (Boehm and Williams, 1943).

Lehman et al. (1951) reported a study in which Propyl Gallate, 20 percent in alcohol, was applied to the forearms of 10 white subjects daily for about 24 days. Sites were examined twice weekly. For the first 14 days, there were no signs or complaints of irritation. During the last 10 days, 5 of the 10 subjects complained of pruritis and erythema. Three of these reactions were mild and subsided within a few days. The other 2 subjects developed a skin eruption that progressed up the arm and onto the trunk; the reaction required 3 weeks to heal. The investigators then applied single 48-hour patches containing 2 percent Propyl Gallate to 2 of the mildly sensitized reactors and to 25 nonsensitive control subjects. Both sensitized subjects reacted mildly to the patch, whereas none of the control subjects reacted to Propyl Gallate. While Propyl Gallate was
Table 7. Clinical irritation and sensitization studies with Propyl Gallate.

<table>
<thead>
<tr>
<th>Concentration Tested</th>
<th>Type of Test</th>
<th>No. tested</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% in propylene glycol</td>
<td>Irritation - Applied to skin on back of hands for 24 hrs</td>
<td>2</td>
<td>No skin irritation</td>
<td>Boehm and Williams, 1943</td>
</tr>
<tr>
<td>20% in alcohol</td>
<td>Irritation/sensitization - Applied to forearms daily for 24 days</td>
<td>10</td>
<td>3 exhibited mild reactions; 2 developed skin eruptions</td>
<td>Kahn et al. 1974</td>
</tr>
<tr>
<td>0.005% in a lipstick</td>
<td>Cumulative irritancy</td>
<td>12</td>
<td>Score of 1.67 (max=630); essentially non-irritating</td>
<td>Hill Top Research, 1978</td>
</tr>
<tr>
<td>0.005% in a lipstick</td>
<td>Cumulative irritancy</td>
<td>12</td>
<td>Score of 29.51 (max = 630); essentially non-irritating</td>
<td>Hill Top Research, 1978</td>
</tr>
<tr>
<td><1% in a lipstick</td>
<td>RIPT</td>
<td>15</td>
<td>No irritation; 1 mild sensitization on challenge; did not suggest significant dermatoxicity</td>
<td>CTFA, 1980e</td>
</tr>
<tr>
<td>0.003% in a suntan oil</td>
<td>RIPT</td>
<td>151</td>
<td>8 scores of 1 (max = 4) and 2 scores of 2 on inductions; no reactions on challenge; no significant allergic reactions</td>
<td>CTFA, 1980f</td>
</tr>
<tr>
<td>0.003% in a suntan butter</td>
<td>RIPT</td>
<td>150</td>
<td>No reactions; no instance of sensitization</td>
<td>CTFA, 1977f</td>
</tr>
<tr>
<td>0.003% in a sun protection stick</td>
<td>RIPT</td>
<td>154</td>
<td>No reactions; no instance of sensitization</td>
<td>CTFA, 1977g</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>RIPT</td>
<td>52</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981a</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>RIPT</td>
<td>52</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981b</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>RIPT</td>
<td>54</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981c</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>RIPT</td>
<td>54</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981d</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>RIPT</td>
<td>54</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981e</td>
</tr>
<tr>
<td>0.003% in a cosmetic formulation</td>
<td>RIPT</td>
<td>54</td>
<td>Slight transient reactions but for a score of 2 (max=4) on 2nd induction patch; no subsequent reactions observed; no irritation or sensitization</td>
<td>FDRL, 1981f</td>
</tr>
<tr>
<td>0.003% in a cosmetic formulation</td>
<td>RIPT</td>
<td>54</td>
<td>Slight transient reactions; no irritation or sensitization</td>
<td>FDRL, 1981g</td>
</tr>
<tr>
<td>1%, 0.1%, 0.5%, and 0.01% in petrolatum</td>
<td>patch tests</td>
<td>1</td>
<td>Allergic contact sensitivity to PG</td>
<td>Bojs et al. 1987</td>
</tr>
<tr>
<td>1% in ethanol and 0.1% in petrolatum</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Cusano et al. 1987</td>
</tr>
<tr>
<td>0.5% in acetone</td>
<td>RIPT</td>
<td>5</td>
<td>Contact dermatitis</td>
<td>Fiss and Wagner, 1988</td>
</tr>
<tr>
<td>1% in pet.</td>
<td>patch tests</td>
<td>2</td>
<td>Positive reactions to PG</td>
<td>Valsecchi and Cainelli, 1988</td>
</tr>
</tbody>
</table>
Table 7 (continued). Clinical irritation and sensitization studies with Propyl Gallate.

<table>
<thead>
<tr>
<th>Concentration Tested</th>
<th>Type of Test</th>
<th>No. tested</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% in pet.</td>
<td>patch tests</td>
<td>6</td>
<td>Positive reactions to PG</td>
<td>Heine, 1988</td>
</tr>
<tr>
<td>2% in pet.</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Wilson et al. 1989</td>
</tr>
<tr>
<td>dissolved in</td>
<td>occluded patch test</td>
<td>5</td>
<td>Thresholds for positive reactions were 0.0025% for upper arm occluded patch; 0.0035% for underarm without shaving, 0.005% for underarm w/out shaving and 0.015% for antecubital fossa.</td>
<td>Kraus et al. 1990</td>
</tr>
<tr>
<td>ethanol:water (25:75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% in petrolatum</td>
<td>patch tests</td>
<td>10</td>
<td>Positive allergic reactions to PG</td>
<td>Marston, 1992</td>
</tr>
<tr>
<td>1% in petrolatum</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Wilkinson and Beck, 1992</td>
</tr>
<tr>
<td>1% in petrolatum</td>
<td></td>
<td>1</td>
<td>Positive reaction to PG and octyl gallate (0.25% in petrolatum)</td>
<td>Athavale and Srinivas, 1994</td>
</tr>
<tr>
<td>0.5%, 1%, and 2% in</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Corazza et al. 1994</td>
</tr>
<tr>
<td>petrolatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various gallates</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reactions to all except possibly methyl gallate at day 2 at 0.3% and ethyl gallate at day 2 (0.1%)</td>
<td>Hemmer, 1996</td>
</tr>
<tr>
<td>(methyl, ethyl, propyl, octyl) in 0.3% and 0.1% w/w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not specified</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Hernández et al. 1997</td>
</tr>
<tr>
<td>1% in pet.</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Mahendran et al. 2002</td>
</tr>
<tr>
<td>saturated in ethanol</td>
<td>patch tests</td>
<td>1</td>
<td>Positive reaction to PG</td>
<td>Mahendran et al. 2002</td>
</tr>
</tbody>
</table>

*RIPT—Repeat Insult Patch Test

A contact sensitizer at high concentrations (10%), the authors suggested that human tolerance to low Propyl Gallate concentrations may be the result of repeated oral exposures to low doses of Propyl Gallate in food.

A repeat insult patch test (RIPT) on a total of 16 subjects was conducted using a lipstick formulation containing less than 1 percent Propyl Gallate. The test material "sufficient to cover a Webril pad" was applied at 48- and/or 72-hour intervals to the upper arms and covered for the first 24 hours between applications. Each site was scored at 48 and/or 72 hours when new patches were applied. The 22-day induction period was followed by a 12-day rest period before application of a 24-hour occlusive challenge patch. No irritation was observed in the 15 subjects who completed the test program, but 1 subject had a mild sensitization reaction following the challenge application at an adjacent site. The test report stated that the score did not suggest "significant dermatotoxicity" (CTFA, 1980e).
Two lipstick formulations, each containing 0.005 percent Propyl Gallate, were tested for cumulative irritancy using 14 subjects, of which 12 completed the test. Approximately 0.2 g of each lipstick and 0.3 ml of 2 reference materials (of low and high irritancy) were applied daily by occlusive patch to the back of each panelist. Patches were removed after 23 hours and scored 1 hour later, and the procedure was repeated for 21 consecutive days. The total calculated scores of the 2 formulations (based on 10 subjects) were 1.67 and 29.51, respectively, placing them in the "essentially nonirritating" classification (score of 0 to 49 on a maximum scale of 630). The total calculated scores for the low and high irritancy reference materials were 2.50 and 616.67, respectively (Hill Top Research, 1978).

Three suntan preparations, an oil, a cream, and a sun protection stick, were evaluated for irritation and sensitization by a modified Draize-Shelanski repeat insult patch test (CTFA, 1980f; CTFA, 1977f; FDRL, 1981). Each preparation contained 0.003 percent Propyl Gallate. Topical, occlusive patches were applied to the upper backs of the panelists on Monday, Wednesday, and Friday for 3 consecutive weeks. Sites were scored (scale of 0 to 4) prior to each patch application. This induction phase was followed by a 2-week nontreatment period. Two consecutive 48-hour challenge patches were then applied to adjacent sites and scored at 48 and 96 hours. The suntan oil, tested on 151 subjects, produced 8 scores of 1 and 2 scores of 2 on induction and no positive reactions on challenge. The suntan cream and sun protection stick produced no reactions when tested on 150 and 154 subjects, respectively. The investigators in all three studies observed no instances of sensitization.

Seven cosmetic formulations, including five sunscreens, were tested for photosensitization in 26 to 28 subjects (Table 7). Each formulation contained 0.003 percent Propyl Gallate. Occlusive patches containing 0.2 g of each product were applied to the volar arms of the subjects for 24 hours. Patches were then removed and sites were scored for irritation (scale of 0 to 4). One forearm of each subject was irradiated with four GE F40 BL lamps for 15 minutes, resulting in a total UVA dosage of 4,400 µW/cm2; the other forearm served as the nonirradiated control. This procedure was repeated 3 times per week for 10 applications/radiations. After an 11- to 20-day rest, adjacent sites were challenged with a 24-hour patch application followed by radiation. These sites were scored 24 and 48 hours later. Six of the formulations produced only slight transient erythemal reactions (scores of ±, 1); the seventh also produced slight reactions.
except for a score of 2 (erythema and edema) on the second induction patch. No subsequent reactions were observed. These formulations did not produce photosensitization in humans (FDRL, 1981a,b,c,d,e,f,g).

CASE REPORTS

Bojs et al. (1987) published a case report of a 60-year-old woman who developed eczema on the hands, forearms, face, neck, legs and buttocks after using a Swedish-made moisturizing cream, “Idomin Fukt.” Patch tests of each of the ingredients produced reactions only to Propyl Gallate at 1, 0.1, 0.05, and 0.01 % in petrolatum.

Cusano et al. (1987) reported that a 68-year-old woman developed severe eczematous dermatitis on her right leg after applying Dermoangiopan gel for two weeks. Patch tests of the gel and each of its ingredients revealed positive results for sensitivity to the gel and to 1% Propyl Gallate in ethanol.

Fiss and Wagner (1988) described five patients, four female, one male, who each developed irritation on their face, hands, and bodies after using Elasan Babylotion®. All of the patients had positive epicutaneous tests with 0.5% Propyl Gallate in acetone.

Valsecchi and Cainelli (1988) described a 21-year-old man and a 34-year-old woman who each developed severe irritation after applying an antibiotic ointment, Traumatociclina®. Patch tests of the ointment and each ingredient showed sensitivity reactions to the ointment and to 1 % Propyl Gallate in petrolatum.

Heine (1988) reported that six female patients exhibited contact dermatitis after using a “lotion for care of the body and babies,” which contained Propyl Gallate. All of the patients tested positive for sensitivity to the lotion and to 1 % Propyl Gallate in petrolatum. The dermatitis cleared after discontinuing use of the lotion.

Wilson et al. (1989) described a 58-year-old woman who developed florid cheilitis after chronic use of a lip balm for seven years to prevent chapping. Of the ingredients patch-tested, 2 % Propyl Gallate and 5 % nickel sulphate (each in petrolatum) gave positive reactions.

Kraus et al. (1990) studied the dose response of allergic contact dermatitis from Propyl Gallate in five Propyl gallate-sensitive human subjects. Using Propyl Gallate dissolved in ethanol:water (25:75), the thresholds for positive reactions were as follows: 0.0025 % for the upper arm occluded patch; 0.0035 % for the underarm without shaving; 0.005 % for the underarm with shaving; and 0.015 % for the antecubital fossa.
Marston (1992) described 10 case reports in which users of various creams and cosmetics had positive reactions to 1 % Propyl Gallate in petrolatum.

Wilkinson and Beck (1992) described a 35-year-old man who had acute swelling and erythema after using Timodine® cream that contained Propyl Gallate. There was a positive reaction to 1 % Propyl Gallate in petrolatum, but not to any of the other ingredients.

Athavale and Srinivas (1994) described a case in which a 23-year-old woman had scaling and swelling of her lips after using a certain lipstick. She was patch tested with the ingredients, and had positive reactions to 1 % Propyl Gallate in petrolatum and 0.25 % octyl gallate in petrolatum.

As described by Corazza et al. (1994), a 42-year old woman had acute eczema after using ointments to treat a burn injury. One of the ointments was traumatocycline, which contained 8 % Propyl Gallate. The ingredients of this cream were patch tested, and only Propyl Gallate at 0.5, 1, and 2 % in petrolatum was positive.

Hemmer et al (1996) reported that a 54-year-old woman who had sensitivity reactions to 1 % Propyl Gallate in a cosmetic preparation was also sensitive to tri- and ortho-diphenols (catechols).

Hernández et al. (1997) reported a case of a 59-year-old man who developed erythema and edema after using Locapred® cream. Of the ingredients patch-tested, only Propyl Gallate was positive (positive dose not specified).

Mahendran et al. (2002) described a 41-year-old man who had erythema and edema around the eyes. He worked in a textile manufacturing and used Propyl Gallate as a stabilizing agent. He was routinely exposed to Propyl Gallate in powder form. Patch tests revealed that he had positive reactions to 1 % Propyl Gallate in petrolatum and to saturated Propyl Gallate in ethanol.

PHOTOSENSITIVITY/PHOTOTOXICITY

Table 8 contains summary data of studies of Propyl Gallate and cosmetic formulations containing Propyl Gallate. At 10 percent in alcohol Propyl Gallate was nonphotosensitizing to human skin. Cosmetic formulations containing 0.003 percent Propyl Gallate were essentially nonphotosensitizing and nonphototoxic.

Propyl Gallate, 10 percent in alcohol, was applied to the arms of 25 white subjects. When the sites
<table>
<thead>
<tr>
<th>Concentration tested</th>
<th>Type of test</th>
<th>No. tested</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% in alcohol</td>
<td>Photosensitization</td>
<td>25</td>
<td>No contact sensitization, or primary irritation observed; effective compound for protection against UV light - induced erythema</td>
<td>Kahn and Curry, 1974</td>
</tr>
<tr>
<td>0.003% in a sun protection stick</td>
<td>Photocontact sensitization</td>
<td>25</td>
<td>No reactions; not a photosensitizer under test conditions</td>
<td>CTFA, 1977h</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Photosensitization</td>
<td>25</td>
<td>Slight transient reactions; no photosensitization</td>
<td>FDRL, 1981a</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Photosensitization</td>
<td>26</td>
<td>Slight transient reactions; no photosensitization</td>
<td>FDRL, 1981b</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Photosensitization</td>
<td>28</td>
<td>Slight transient reactions; no photosensitization</td>
<td>FDRL, 1981c</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Photosensitization</td>
<td>28</td>
<td>Slight transient reactions; no photosensitization</td>
<td>FDRL, 1981d</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Photosensitization</td>
<td>26</td>
<td>Slight transient reactions; no photosensitization</td>
<td>FDRL, 1981e</td>
</tr>
<tr>
<td>0.003% in a cosmetic formulation</td>
<td>UVA Photosensitization</td>
<td>26</td>
<td>Slight transient reactions but for a score of 2 (max = 4) on 2nd induction patch; no subsequent reactions observed; no photosensitization</td>
<td>FDRL, 1981f</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>Slight transient reactions; no phototoxicity</td>
<td>FDRL, 1981a</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>Slight transient reactions; no phototoxicity</td>
<td>FDRL, 1981b</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>No reactions; no phototoxicity</td>
<td>FDRL, 1981c</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>No reactions; no phototoxicity</td>
<td>FDRL, 1981d</td>
</tr>
<tr>
<td>0.003% in a sunscreen</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>No reactions; no phototoxicity</td>
<td>FDRL, 1981e</td>
</tr>
<tr>
<td>0.003% in a cosmetic formulation</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>Slight transient reactions; no phototoxicity</td>
<td>FDRL, 1981f</td>
</tr>
<tr>
<td>0.003% in a cosmetic formulation</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>No reactions; no phototoxicity</td>
<td>FDRL, 1981g</td>
</tr>
<tr>
<td>0.003% in a sun protection stick</td>
<td>UVA Phototoxicity</td>
<td>10</td>
<td>No reactions; not phototoxic under test conditions</td>
<td>CTFA, 1977i</td>
</tr>
<tr>
<td>0.003% in a suntan oil</td>
<td>Controlled use</td>
<td>78</td>
<td>No clinically significant reactions observed; safe for intended use</td>
<td>CTFA, 1980g</td>
</tr>
</tbody>
</table>
dried, they were exposed to an FS-40 Westinghouse sunlamp (280 to 370 nm) at a dose of three times the individual's minimal erythemal dose (MED). Erythema was evaluated 24 hours later. Propyl Gallate was then reapplied to the same site, allowed to dry, rinsed with warm water for 5 minutes, and radiated. Sites were evaluated 24 hours later. No contact sensitization, photosensitization, or primary irritation to Propyl Gallate was observed. Propyl Gallate was the most effective compound tested (due to the prevention of peroxide formation) for protection against UV light-induced erythema, and retained its effectiveness even after washing (Kahn and Curry, 1974).

The photocontact sensitization of a sun protection stick containing 0.003 percent Propyl Gallate was evaluated using 25 subjects. A 0.2 ml sample of the sun stick was applied to the stripped skin of the back (one 2-inch square) of each subject. Sites were then exposed to three MEDs of xenon solar-simulating radiation and subsequently occluded. This procedure was repeated every 48 hours for 5 applications. After a 10-day rest, subjects were challenged on both normal and stripped skin in the same manner; however, this time the radiation was filtered through window glass. Sites were again occluded and evaluated at 24, 48, and 72 hours. No reactions were observed. The sun protection stick was not a photosensitizer under the test conditions (CTFA, 1977h).

Seven cosmetic formulations, including five sunscreens, were tested for photosensitization in 26 to 28 subjects. Each formulation contained 0.003 percent Propyl Gallate. Occlusive patches containing 0.2 g of each product were applied to the volar arms of the subjects for 24 hours. Patches were then removed and sites were scored for irritation (scale of 0 to 4). One forearm of each subject was irradiated with four GE F40 BL lamps for 15 minutes, resulting in a total UVA dosage of 4,400 μW/cm²; the other forearm served as the nonradiated control. This procedure was repeated 3 times per week for 10 applications/radiations. After an 11- to 20-day rest, adjacent sites were challenged with a 24-hour patch application followed by radiation. These sites were scored 24 and 48 hours later. Six of the formulations produced only slight transient erythemal reactions (scores of ±, 1); the seventh also produced slight reactions except for a score of 2 (erythema and edema) on the second induction patch. No subsequent reactions were observed. These formulations did not produce photosensitization in humans (FDRL, 1981a,b,c,d,e,f,g).

Each of these 7 formulations was also tested for phototoxicity in 10 subjects. Occlusive patches
containing 0.2 g samples of each product were applied to the scrubbed, tape-stripped volar arms for 24 hours. Sites were scored on patch removal, and one arm of each subject was then irradiated with UVA light for 15 minutes for a total dose of 4,400 µW/cm². Sites were scored again immediately following, 24 and 72 hours, and 7 days after radiation. Four of the formulations produced no reactions; the other three produced only slight transient reactions. No phototoxicity was produced by these formulations.(FDRL, 1981a,b,c,d,e,f,g)

The phototoxicity of a sun protection stick containing 0.003 percent Propyl Gallate was evaluated using 10 subjects. Applications of 5 ml/cm² of the sun stick were rubbed into the lower back of each subject and then occluded for 24 hours. Patches were removed, and the sites were irradiated for 20 minutes with filtered long-wave UV light (UVA 30 mW/cm²) using a 150W xenon solar simulator (emission of 124 mW/cm²). Adjacent skin sites received similar treatment as controls. Reactions were graded 24 and 48 hours later. No reactions were observed; the investigators concluded that the sun protection stick was not phototoxic under the test conditions (CTFA, 1977i).

A suntan oil containing 0.003 percent Propyl Gallate was evaluated by a 2-day controlled use test. Each of the 78 subjects applied the oil to exposed parts of the body at 30 minute intervals for 2 hours of continuous sun exposure (11:30 am to 1:30 pm). Subjects were required to enter the pool for 10 minutes at the end of each hour. These procedures were repeated the second day. Any reactions immediately, 24, or 48 hours after application were noted. No clinically significant reactions were observed; the product was considered safe for intended use (CTFA, 1980g).

ORAL TOXICITY

A man ingested 0.5 g Propyl Gallate daily for 6 consecutive days. Urine was collected during this time and for 6 days after the final administration. The urine was negative for albumin, abnormal sedimental contents, red blood cells, and casts. The authors concluded that Propyl Gallate was safe and effective as an anti-oxidant in medicinal and pharmaceutical preparations (Boehm and Williemas, 1943).

Nine infants in a pediatric ward of a hospital were found to have significant methemoglobinemia. A fat preservative in an infant formula was considered the probable source of toxicity. When the preservative was removed from these infants' diet, methemoglobin concentrations returned to normal within 48 to 96
hours. The preservative was identified as a mixture of BHA, BHT, and Propyl Gallate. In addition, age was an important factor in respect to the toxicity of phenolic compounds, since only newborn babies (6 to 15 weeks old) and not older babies were affected by the preservative in the formula. Pyrogallol, which is chemically related to Propyl Gallate, had been previously implicated in methemoglobinemia (Nitzan et al. 1979).

SUMMARY

Propyl Gallate is the n-propyl ester of gallic acid (3,4,5-trihydroxybenzoic acid). It is soluble in ethanol, ethyl ether, oil, lard, and aqueous solutions of PEG ethers of cetyl alcohol (ceteths), but only slightly soluble in water. Propyl Gallate is an antioxidant that reacts chemically to inhibit the generation or accumulation of free radicals in chemical and biological systems. It is stable in neutral or slightly acidic solutions, but loses stability in mild alkaline environments or when heated.

In cosmetics, Propyl Gallate is employed as an antioxidant to stabilize vitamins, essential oils, perfumes, fats and oils. Although it may be used alone, it is generally used in combination with other antioxidants. As reported to FDA, Propyl Gallate is used in 167 cosmetic products at a maximum concentration of 0.1 percent. Propyl Gallate is a Generally Recognized as Safe (GRAS) antioxidant to protect fats, oils, and fat-containing food from rancidity that results from the formation of peroxides.

Propyl Gallate is absorbed when ingested, then methylated, conjugated, and excreted in the urine. Other urinary metabolites included pyrogallol (free and conjugated) and gallic acid.

Propyl Gallate has numerous biological effects, most as a direct result of this ingredient's free-radical scavenging ability. Biological effects include antimicrobial activity, enzyme inhibition, inhibition of biosynthetic processes, inhibition of the formation of nitrosamines, anesthesia, inhibition of neuromuscular response to chemicals ionizing/UV radiation protection, chemoprotection, antimutagenesis, anticarcinogenesis, antitumorigenesis, antiteratogenesis, and anticariogenesis.

Acute animal toxicity studies indicate that Propyl Gallate is slightly toxic when ingested, but there were no systemic toxic effects noted when Propyl Gallate was applied to the skin. Findings in subchronic studies include: 20 percent Propyl Gallate induces reversible epidermal changes when applied to the skin of
guinea pigs for 6 weeks; this ingredient does not induce depigmentation when applied to the skin of black guinea pigs for 1 to 6 months; and Propyl Gallate is practically nontoxic or slightly toxic when ingested at concentrations up to 0.5 percent or doses up to 500 mg/kg. Propyl Gallate is a strong sensitizer when tested intradermally, less sensitizing when tested topically, and almost nonsensitizing topically at 0.1. Acute eye irritation tests conducted on 9 cosmetic formulations, each containing less than 1 percent Propyl Gallate, were negative.

Numerous chronic oral toxicity studies indicate that Propyl Gallate, when ingested at concentrations up to 5 percent in the diet for up to 2 years, is practically nontoxic to rats, mice, dogs, and guinea pigs. A phototoxicity study conducted on a cosmetic formulation containing 0.003 percent Propyl Gallate determined that the product was not phototoxic to guinea pigs.

In bacterial mutagenesis tests, chromosomal aberration assays, sister chromatid exchange assays, cytogenetic assays, dominant lethal assays, host-mediated assays, and a silkworm mutation assay results were mixed. Propyl Gallate enhanced the mutagenic activity of N-hydroxy-2-acetylaminofluorine and 4-nitroquinoline-1-oxide in an Ames test using S. typhimurium strains TA98 and TA100, respectively. Metabolic activation was required for this to occur.

Propyl Gallate was nontumorigenic when injected intraperitoneally in strain A mice at doses up to 2.4 g/kg 3 times weekly for 8 weeks. In a recently completed bioassay, the National Toxicology Program reported that Propyl Gallate was noncancerous in mice and rats, although an increased incidence of malignant lymphomas in male mice may have been related to the administration of Propyl Gallate. Female rats fed 0.5 g Propyl Gallate had substantially increased fetal resorption rates when compared to controls. However, in four separate teratogenesis studies, Propyl Gallate at doses up to 2.04 g/kg was nonteratogenic in rats, rabbits, mice, or hamsters.

In clinical cumulative irritancy tests, Propyl Gallate was nonirritating at concentrations up to 10 percent. Patch tests at concentrations less than 1 percent yielded positive sensitization responses. RIPTs conducted on cosmetic formulations containing less than 1 percent Propyl Gallate produced no irritation or sensitization, but at 1% and higher, sensitization reactions were seen. Propyl Gallate at a concentration of 10 percent in alcohol was nonphototoxic in 25 subjects. Cosmetic formulations, each containing 0.003
percent Propyl Gallate, produced no signs of photosensitization or phototoxicity in a total of 371 subjects. Repeated oral ingestion of 0.5 g Propyl Gallate did not result in toxicity.
REFERENCES

CTFA. 1977e. Submission of data. Unpublished phototoxicity test on a sun protection stick containing propyl gallate. (September 27, 1977)*

CTFA. 1977f. Submission of data. Unpublished RIPT on a suntan butter containing propyl gallate. (June 20, 1977)*

CTFA. 1977g. Submission of data. Unpublished repeat insult patch test on a sun protection stick containing propyl gallate. (March 1, 1977)*
CTFA. 1977h. Submission of data. Unpublished photocontact allergy test on a sun protection stick containing propyl gallate. (February 28, 1977)*

CTFA. 1977i. Submission of data. Unpublished phototoxicity test on a sun protection stick containing propyl gallate. (February 28, 1977)*

CTFA. 1980a. Submission of data. Unpublished primary skin irritation and corrosivity study of a lipstick containing propyl gallate (2-8-8). (August 7, 1980)*

CTFA. 1980b. Submission of data. Unpublished primary skin irritation test on a suntan oil containing propyl gallate. (June 19, 1980)*

CTFA. 1980c. Submission of data. Unpublished acute eye irritation study of a lipstick containing propyl gallate (2-8-5). (August 7, 1980)*

CTFA. 1980e. Submission of data. Unpublished repeated insult patch test (RIPT) of a lipstick containing propyl gallate (2-8-7). (October 2, 1980)*

CTFA. 1980f. Submission of data. Unpublished RIPT on a suntan oil containing propyl gallate. (September 12, 1980)*

CTFA. 1980g. Submission of data. Unpublished controlled use test on a suntan oil containing propyl gallate. (September 25, 1980)*

CTFA. 2003. Concentration of use of Propyl Gallate in cosmetic products. Unpublished data submitted by CTFA.*

Food and Drugs Research Labs (FDRL). 1972. GRAS (Generally Recognized As Safe) food ingredients: Propyl gallate. (PB-221 207):1-51.*

FDRL. 1981f. Clinical safety evaluation (photoallergy series) of sample: SP-103-3-A, a cosmetic formulation containing propyl gallate. (July 2, 1981)*

FDRL. 1981g. Clinical safety evaluation (photoallergy series) of sample: SP-103-3-E, a cosmetic formulation containing propyl gallate. (July 2, 1981)*

Stillmeadow. 1977b. Submission of data by CTFA, November 29, 1977.. Unpublished acute oral toxicity study in rats of a lipstick containing propyl gallate (2-8-4).*

Available upon request: Administrator, Cosmetic Ingredient Review, 1101 17th Street NW, Suite 310, Washington, D.C. 20036, U.S.A.